These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 31462158)
1. The transcription factor Spt4-Spt5 complex regulates the expression of Wen X; Gatica D; Yin Z; Hu Z; Dengjel J; Klionsky DJ Autophagy; 2020 Jul; 16(7):1172-1185. PubMed ID: 31462158 [TBL] [Abstract][Full Text] [Related]
2. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. Crickard JB; Fu J; Reese JC J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063 [TBL] [Abstract][Full Text] [Related]
3. Old factors, new players: transcriptional regulation of autophagy. Shu WJ; Zhao MJ; Klionsky DJ; Du HN Autophagy; 2020 May; 16(5):956-958. PubMed ID: 32054419 [TBL] [Abstract][Full Text] [Related]
4. Emerging Roles of SPT5 in Transcription. Pandey V; Punniyamoorthy S; Pokharel YR Cell Physiol Biochem; 2023 Oct; 57(5):395-408. PubMed ID: 37876219 [TBL] [Abstract][Full Text] [Related]
5. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817 [TBL] [Abstract][Full Text] [Related]
6. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Wada T; Takagi T; Yamaguchi Y; Ferdous A; Imai T; Hirose S; Sugimoto S; Yano K; Hartzog GA; Winston F; Buratowski S; Handa H Genes Dev; 1998 Feb; 12(3):343-56. PubMed ID: 9450929 [TBL] [Abstract][Full Text] [Related]
7. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Hartzog GA; Wada T; Handa H; Winston F Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the Schizosaccharomyces pombe Spt5-Spt4 complex. Schwer B; Schneider S; Pei Y; Aronova A; Shuman S RNA; 2009 Jul; 15(7):1241-50. PubMed ID: 19460865 [TBL] [Abstract][Full Text] [Related]
9. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5. Meyer PA; Li S; Zhang M; Yamada K; Takagi Y; Hartzog GA; Fu J Mol Cell Biol; 2015 Oct; 35(19):3354-69. PubMed ID: 26217010 [TBL] [Abstract][Full Text] [Related]
10. The trehalose-6-phosphate phosphatase Tps2 regulates Kim B; Lee Y; Choi H; Huh WK Autophagy; 2021 Apr; 17(4):1013-1027. PubMed ID: 32240040 [TBL] [Abstract][Full Text] [Related]
11. The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mayekar MK; Gardner RG; Arndt KM Mol Cell Biol; 2013 Aug; 33(16):3259-73. PubMed ID: 23775116 [TBL] [Abstract][Full Text] [Related]
12. Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5. Blythe A; Gunasekara S; Walshe J; Mackay JP; Hartzog GA; Vrielink A Protein Expr Purif; 2014 Aug; 100():54-60. PubMed ID: 24859675 [TBL] [Abstract][Full Text] [Related]
13. Identification of Regions in the Spt5 Subunit of DRB Sensitivity-inducing Factor (DSIF) That Are Involved in Promoter-proximal Pausing. Qiu Y; Gilmour DS J Biol Chem; 2017 Mar; 292(13):5555-5570. PubMed ID: 28213523 [TBL] [Abstract][Full Text] [Related]
14. CRISPRi-mediated depletion of Spt4 and Spt5 reveals a role for DSIF in the control of HIV latency. Krasnopolsky S; Novikov A; Kuzmina A; Taube R Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194656. PubMed ID: 33333262 [TBL] [Abstract][Full Text] [Related]
15. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate. GarcĂa A; Collin A; Calvo O Mol Biol Cell; 2012 Nov; 23(21):4297-312. PubMed ID: 22973055 [TBL] [Abstract][Full Text] [Related]
16. Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing. Xiao Y; Yang YH; Burckin TA; Shiue L; Hartzog GA; Segal MR PLoS Comput Biol; 2005 Sep; 1(4):e39. PubMed ID: 16172632 [TBL] [Abstract][Full Text] [Related]
17. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Lindstrom DL; Squazzo SL; Muster N; Burckin TA; Wachter KC; Emigh CA; McCleery JA; Yates JR; Hartzog GA Mol Cell Biol; 2003 Feb; 23(4):1368-78. PubMed ID: 12556496 [TBL] [Abstract][Full Text] [Related]
18. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Zhou K; Kuo WH; Fillingham J; Greenblatt JF Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6956-61. PubMed ID: 19365074 [TBL] [Abstract][Full Text] [Related]
19. The yeast transcription factor Stb5 acts as a negative regulator of autophagy by modulating cellular metabolism. Delorme-Axford E; Wen X; Klionsky DJ Autophagy; 2023 Oct; 19(10):2719-2732. PubMed ID: 37345792 [TBL] [Abstract][Full Text] [Related]
20. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Swanson MS; Winston F Genetics; 1992 Oct; 132(2):325-36. PubMed ID: 1330823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]