These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 314624)

  • 1. The interaction of ruthenium red with surface charges controlling excitation-contraction coupling in frog sartorius.
    Dörrscheidt-Käfer M
    Pflugers Arch; 1979 Jun; 380(2):181-7. PubMed ID: 314624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation-contraction coupling in frog sartorius and the role of the surface charge due to the carboxyl group of sialic acid.
    Dörrscheidt-Käfer M
    Pflugers Arch; 1979 Jun; 380(2):171-9. PubMed ID: 39290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of ruthenium red and its interaction with membrane-bound sialic acid on contraction threshold in frog skeletal muscle [proceedings].
    Dörrscheidt-Káfer M; Grocki K
    J Physiol; 1978 Nov; 284():52P. PubMed ID: 310462
    [No Abstract]   [Full Text] [Related]  

  • 4. Ruthenium red: differential effects on excitation and excitation-contraction coupling in frog skeletal muscle.
    Snowdowne KW; Howell JN
    J Muscle Res Cell Motil; 1984 Aug; 5(4):399-410. PubMed ID: 6207202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ruthenium red on excitation-contraction coupling in frog skeletal muscle.
    Suzuki T; Obara K; Nagai T
    Jpn J Physiol; 1980; 30(1):49-59. PubMed ID: 6155498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres.
    Baylor SM; Hollingworth S; Marshall MW
    J Physiol; 1989 Jan; 408():617-35. PubMed ID: 2476559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The action of Ca2+ , Mg2+ and H+ on the contraction threshold of frog skeletal muscle: Evidence for surface charges controlling electro-mechanical coupling.
    Dörrscheidt-Käfer M
    Pflugers Arch; 1976 Mar; 362(1):33-41. PubMed ID: 3761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of amino-reactive substances on contraction threshold of frog skeletal muscle.
    Dörrscheidt-Käfer M
    J Membr Biol; 1983; 73(1):17-23. PubMed ID: 6602890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the action of La3+ and Ca2+ on contraction threshold and other membrane parameters of frog skeletal muscle.
    Dörrscheidt-Käfer M
    J Membr Biol; 1981; 62(1-2):95-103. PubMed ID: 6974245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that ruthenium red disturbs the synaptic transmission in the rat hippocampal slices through interacting with sialic acid residues.
    Wieraszko A
    Brain Res; 1986 Jul; 378(1):120-6. PubMed ID: 2427153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of repetitive activity, ruthenium red, and elevated extracellular calcium on frog skeletal muscle: implications for t-tubule conduction.
    Howell JN; Oetliker H
    Can J Physiol Pharmacol; 1987 Apr; 65(4):691-6. PubMed ID: 2440544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmitter release: ruthenium red used to demonstrate a possible role of sialic acid containing substrates.
    Baux G; Simonneau M; Tauc L
    J Physiol; 1979 Jun; 291():161-78. PubMed ID: 225472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blocking action of Ruthenium Red on cholinergic and non-cholinergic synapses: possible involvment of sialic acid-containing substrates in neurotransmission.
    Baux G; Simonneau M; Tauc L
    Brain Res; 1978 Sep; 152(3):633-8. PubMed ID: 210881
    [No Abstract]   [Full Text] [Related]  

  • 14. On the action of ruthenium red and neuraminidase at the frog neuromuscular junction.
    Robertson B; Wann KT
    J Physiol; 1987 Jan; 382():411-23. PubMed ID: 2442365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog.
    Lüttgau HC; Spiecker W
    J Physiol; 1979 Nov; 296():411-29. PubMed ID: 316821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ruthenium red on the assembly and disassembly of microtubules and on rapid axonal transport.
    Deinum J; Wallin M; Kanje M; Lagercrantz C
    Biochim Biophys Acta; 1981 Jul; 675(2):209-13. PubMed ID: 6168297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect o f calcium on contraction and conductance thresholds in frog skeletal muscle.
    Costantin LL
    J Physiol; 1968 Mar; 195(1):119-32. PubMed ID: 5639795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in threshold for calcium transients in frog skeletal muscle fibres owing to calcium depletion in the T-tubules.
    Miledi R; Parker I; Zhu PH
    J Physiol; 1983 Nov; 344():233-41. PubMed ID: 6317850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruthenium red effect on mechanical and electrical properties of mammalian skeletal muscle.
    Delbono O; Kotsias BA
    Life Sci; 1989; 45(18):1699-708. PubMed ID: 2479803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibres.
    Cota G; Stefani E
    J Physiol; 1981 Aug; 317():303-16. PubMed ID: 6975818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.