These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31462636)

  • 1. High-performance silk-based hybrid membranes employed for osmotic energy conversion.
    Xin W; Zhang Z; Huang X; Hu Y; Zhou T; Zhu C; Kong XY; Jiang L; Wen L
    Nat Commun; 2019 Aug; 10(1):3876. PubMed ID: 31462636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion.
    Zhang Y; Wang H; Wang J; Li L; Sun H; Wang C
    Chem Asian J; 2023 Dec; 18(23):e202300876. PubMed ID: 37886875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confined amphipathic ionic-liquid regulated anodic aluminum oxide membranes with adjustable ion selectivity for improved osmotic energy conversion.
    Ma S; Hao J; Hou Y; Zhao J; Lin C; Sui X
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1217-1224. PubMed ID: 37797497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH
    Yao L; Li Q; Pan S; Cheng J; Liu X
    Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting.
    Lin C; Hao J; Zhao J; Hou Y; Ma S; Sui X
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):840-847. PubMed ID: 37898068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting.
    Xin W; Xiao H; Kong XY; Chen J; Yang L; Niu B; Qian Y; Teng Y; Jiang L; Wen L
    ACS Nano; 2020 Aug; 14(8):9701-9710. PubMed ID: 32687698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes.
    Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J
    J Colloid Interface Sci; 2024 Nov; 673():365-372. PubMed ID: 38878371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion.
    Zhao Y; Wang J; Kong XY; Xin W; Zhou T; Qian Y; Yang L; Pang J; Jiang L; Wen L
    Natl Sci Rev; 2020 Aug; 7(8):1349-1359. PubMed ID: 34692163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion.
    Awati A; Zhou S; Shi T; Zeng J; Yang R; He Y; Zhang X; Zeng H; Zhu D; Cao T; Xie L; Liu M; Kong B
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27075-27088. PubMed ID: 37235387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS; Preet A; Lin TY; Lin TE
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion.
    Ding L; Xiao D; Zhao Z; Wei Y; Xue J; Wang H
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202869. PubMed ID: 35780505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Ti
    Ding L; Zheng M; Xiao D; Zhao Z; Xue J; Zhang S; Caro J; Wang H
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202206152. PubMed ID: 35768337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes.
    Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z
    J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting.
    Bang KR; Kwon C; Lee H; Kim S; Cho ES
    ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oppositely Charged Ti
    Ding L; Xiao D; Lu Z; Deng J; Wei Y; Caro J; Wang H
    Angew Chem Int Ed Engl; 2020 May; 59(22):8720-8726. PubMed ID: 31950586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Angstrom-Scale Heterogeneous MOF-on-MOF Membrane for Osmotic Energy Harvesting.
    Tonnah RK; Chai M; Abdollahzadeh M; Xiao H; Mohammad M; Hosseini E; Zakertabrizi M; Jarrahbashi D; Asadi A; Razmjou A; Asadnia M
    ACS Nano; 2023 Jul; 17(13):12445-12457. PubMed ID: 37347939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.