These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31462672)

  • 1. Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration.
    Bhattacharya S; John S
    Sci Rep; 2019 Aug; 9(1):12482. PubMed ID: 31462672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental demonstration of broadband solar absorption beyond the lambertian limit in certain thin silicon photonic crystals.
    Hsieh ML; Kaiser A; Bhattacharya S; John S; Lin SY
    Sci Rep; 2020 Jul; 10(1):11857. PubMed ID: 32678229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.
    Pathi P; Peer A; Biswas R
    Nanomaterials (Basel); 2017 Jan; 7(1):. PubMed ID: 28336851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells.
    Eyderman S; John S
    Sci Rep; 2016 Jun; 6():28303. PubMed ID: 27334045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light trapping in thin-film silicon solar cells with submicron surface texture.
    Dewan R; Marinkovic M; Noriega R; Phadke S; Salleo A; Knipp D
    Opt Express; 2009 Dec; 17(25):23058-65. PubMed ID: 20052232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells.
    Boroumand J; Das S; Vázquez-Guardado A; Franklin D; Chanda D
    Sci Rep; 2016 Aug; 6():31013. PubMed ID: 27499446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency.
    Savin H; Repo P; von Gastrow G; Ortega P; Calle E; Garín M; Alcubilla R
    Nat Nanotechnol; 2015 Jul; 10(7):624-8. PubMed ID: 25984832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raytracing Modelling of Infrared Light Management Using Molybdenum Disulfide (MoS
    Elsmani MI; Fatima N; Torres I; Fernández S; Jallorina MPA; Chelvanathan P; Rais ARM; Daud MNM; Nasir SNS; Sepeai S; Ludin NA; Teridi MAM; Sopian K; Ibrahim MA
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures.
    Abdellatif S; Kirah K; Ghannam R; Khalil AS; Anis W
    Appl Opt; 2015 Jun; 54(17):5534-41. PubMed ID: 26192857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 50-µm thick flexible dopant-free interdigitated-back-contact silicon heterojunction solar cells with front MoO
    Lu N; Lei Q; Xu X; Yang L; Yang Z; Liu Z; Zeng Y; Ye J; He S
    Opt Express; 2022 Jun; 30(12):21309-21323. PubMed ID: 36224853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression.
    He J; Gao P; Liao M; Yang X; Ying Z; Zhou S; Ye J; Cui Y
    ACS Nano; 2015 Jun; 9(6):6522-31. PubMed ID: 26047260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture.
    Mendes MJ; Haque S; Sanchez-Sobrado O; Araújo A; Águas H; Fortunato E; Martins R
    iScience; 2018 May; 3():238-254. PubMed ID: 30428324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency.
    Jeong S; McGehee MD; Cui Y
    Nat Commun; 2013; 4():2950. PubMed ID: 24335845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Efficiency Crystalline Silicon-Based Solar Cells Using Textured TiO
    Elrashidi A; Elleithy K
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency photonic crystal solar cell architecture.
    Chutinan A; Kherani NP; Zukotynski S
    Opt Express; 2009 May; 17(11):8871-8. PubMed ID: 19466136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon Microwire Arrays with Nanoscale Spacing for Radial Junction c-Si Solar Cells with an Efficiency of 20.5.
    Kim N; Choi D; Kim H; Um HD; Seo K
    ACS Nano; 2021 Sep; 15(9):14756-14765. PubMed ID: 34583468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells.
    Paetzold UW; Moulin E; Pieters BE; Carius R; Rau U
    Opt Express; 2011 Nov; 19 Suppl 6():A1219-30. PubMed ID: 22109618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures.
    Branham MS; Hsu WC; Yerci S; Loomis J; Boriskina SV; Hoard BR; Han SE; Chen G
    Adv Mater; 2015 Apr; 27(13):2182-8. PubMed ID: 25692399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.