BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31462677)

  • 1. Simultaneous growth of three-dimensional carbon nanotubes and ultrathin graphite networks on copper.
    Jang LW; Shim J; Son DI; Cho H; Zhang L; Zhang J; Menghini M; Locquet JP; Seo JW
    Sci Rep; 2019 Aug; 9(1):12344. PubMed ID: 31462677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of individual nanotubes in graphitic layers for electrical characterization.
    Roy D; Tiwari N; Mukhopadhyay K; Saxena AK
    Nanotechnology; 2014 Mar; 25(11):115701. PubMed ID: 24556797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Applications of Carbon Nanotubes in Organic Solar Cells.
    Muchuweni E; Mombeshora ET; Martincigh BS; Nyamori VO
    Front Chem; 2021; 9():733552. PubMed ID: 35071180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous coating of carbon nanotubes with tailored N-doped carbon layers for improved electrochemical energy storage.
    He Y; Li H; Zhang Q; He C; Zhang X; Yang Y
    RSC Adv; 2019 Dec; 9(70):40933-40939. PubMed ID: 35540035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization.
    Liu X; George MN; Park S; Miller Ii AL; Gaihre B; Li L; Waletzki BE; Terzic A; Yaszemski MJ; Lu L
    Acta Biomater; 2020 Jul; 111():129-140. PubMed ID: 32428680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes.
    Aval LF; Ghoranneviss M; Pour GB
    Heliyon; 2018 Nov; 4(11):e00862. PubMed ID: 30761358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteria-affinity aminated carbon nanotubes bridging reduced graphene oxide for highly efficient microbial electrocatalysis.
    Yi G; Cui D; Yang L; Fang D; Chang Z; Cheng H; Shao P; Luo X; Wang A
    Environ Res; 2020 Dec; 191():110212. PubMed ID: 32931790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.
    Paul RK; Ghazinejad M; Penchev M; Lin J; Ozkan M; Ozkan CS
    Small; 2010 Oct; 6(20):2309-13. PubMed ID: 20862676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors.
    Kang KN; Kim IH; Ramadoss A; Kim SI; Yoon JC; Jang JH
    Phys Chem Chem Phys; 2018 Jan; 20(2):719-727. PubMed ID: 29231217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LifePo₄ Coated Homogeneously with 3D Carbon Nanotube Conductive Networks for Enhanced Electrochemical Performance.
    Xiao K; Chen X; Deng W; Tang Q; Hu A; Zhang L; Liu Z; Li Z
    J Nanosci Nanotechnol; 2017 Jan; 17(1):341-7. PubMed ID: 29620833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Bonding Improvement through Nickel Decoration on Carbon Nanotubes in Carbon Nanotubes/Cu Composite Foams Reinforced Copper Matrix Composites.
    Wang D; Yan A; Liu Y; Wu Z; Gan X; Li F; Tao J; Li C; Yi J
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study of Silver Decoration on Carbon Nanotubes via Ultrasonic Chemical Synthesis and Their Reinforced Copper Matrix Composites.
    Tian D; Liu Y; Yu J; Zhao Q; Tao J; Wu Z; Zhang J; Fan Y; Liu Y; Li C; Yi J
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrobenzene reduction promoted by the integration of carbon nanotubes and Geobacter sulfurreducens.
    Lu Y; Zhang S; Liu Q; Zhong L; Xie Q; Duan A; Yang Z; Liu Q; Zhang Z; Hao J
    Environ Pollut; 2023 May; 325():121444. PubMed ID: 36921658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Growth of Oxygen Vacancy-Enriched Co
    Zhang X; Ma G; Shui L; Zhou G; Wang X
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4419-4428. PubMed ID: 33433991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel catalyst derived from Co-ZIFs to grow N-doped carbon nanotubes for all-solid-state supercapacitors with high performance.
    Qi Y; Lv T; Chen Z; Duan Y; Li X; Tang W; Sun Q; Zhai D; Chen T
    Nanoscale; 2023 Aug; 15(32):13280-13288. PubMed ID: 37545477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous SnO
    Daneshvar F; Aziz A; Abdelkader AM; Zhang T; Sue HJ; Welland ME
    Nanotechnology; 2019 Jan; 30(1):015401. PubMed ID: 30277470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures.
    Aguiló-Aguayo N; Amade R; Hussain S; Bertran E; Bechtold T
    Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29232892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber.
    Wang L; Huang Y; Li C; Chen J; Sun X
    Phys Chem Chem Phys; 2015 Jan; 17(3):2228-34. PubMed ID: 25485522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.
    Seo DH; Yick S; Han ZJ; Fang JH; Ostrikov KK
    ChemSusChem; 2014 Aug; 7(8):2317-24. PubMed ID: 24828784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.