BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31462775)

  • 1. Structure and mechanism of mitochondrial proton-translocating transhydrogenase.
    Kampjut D; Sazanov LA
    Nature; 2019 Sep; 573(7773):291-295. PubMed ID: 31462775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton-translocating transhydrogenase: an update of unsolved and controversial issues.
    Pedersen A; Karlsson GB; Rydström J
    J Bioenerg Biomembr; 2008 Oct; 40(5):463-73. PubMed ID: 18972197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial NAD(P)
    Francisco A; Figueira TR; Castilho RF
    Antioxid Redox Signal; 2022 May; 36(13-15):864-884. PubMed ID: 34155914
    [No Abstract]   [Full Text] [Related]  

  • 5. Proton translocation by transhydrogenase.
    Jackson JB
    FEBS Lett; 2003 Jun; 545(1):18-24. PubMed ID: 12788487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of the binding-change mechanism for proton-translocating transhydrogenase.
    Jackson JB
    Biochim Biophys Acta; 2012 Oct; 1817(10):1839-46. PubMed ID: 22538293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The high-resolution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from human heart mitochondria.
    White SA; Peake SJ; McSweeney S; Leonard G; Cotton NP; Jackson JB
    Structure; 2000 Jan; 8(1):1-12. PubMed ID: 10673423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinamide Nucleotide Transhydrogenase as a Sensor of Mitochondrial Biology.
    Nesci S; Trombetti F; Pagliarani A
    Trends Cell Biol; 2020 Jan; 30(1):1-3. PubMed ID: 31753532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review and Hypothesis. New insights into the reaction mechanism of transhydrogenase: Swivelling the dIII component may gate the proton channel.
    Jackson JB; Leung JH; Stout CD; Schurig-Briccio LA; Gennis RB
    FEBS Lett; 2015 Jul; 589(16):2027-33. PubMed ID: 26143375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of invariant amino acid residues at the hydride transfer site of proton-translocating transhydrogenase.
    Brondijk THC; van Boxel GI; Mather OC; Quirk PG; White SA; Jackson JB
    J Biol Chem; 2006 May; 281(19):13345-13354. PubMed ID: 16533815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of an asymmetric complex of the two nucleotide binding components of proton-translocating transhydrogenase.
    Cotton NP; White SA; Peake SJ; McSweeney S; Jackson JB
    Structure; 2001 Feb; 9(2):165-76. PubMed ID: 11250201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the apo-form of the NADP(H)-binding domain III of proton-pumping Escherichia coli transhydrogenase: implications for the reaction mechanism of the intact enzyme.
    Pedersen A; Karlsson J; Althage M; Rydström J
    Biochim Biophys Acta; 2003 Jun; 1604(2):55-9. PubMed ID: 12765762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton translocating nicotinamide nucleotide transhydrogenase from E. coli. Mechanism of action deduced from its structural and catalytic properties.
    Bizouarn T; Fjellström O; Meuller J; Axelsson M; Bergkvist A; Johansson C; Göran Karlsson B; Rydström J
    Biochim Biophys Acta; 2000 Apr; 1457(3):211-28. PubMed ID: 10773166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural biology. Division of labor in transhydrogenase by alternating proton translocation and hydride transfer.
    Leung JH; Schurig-Briccio LA; Yamaguchi M; Moeller A; Speir JA; Gennis RB; Stout CD
    Science; 2015 Jan; 347(6218):178-81. PubMed ID: 25574024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between transhydrogenase and thio-nicotinamide Analogues of NAD(H) and NADP(H) underline the importance of nucleotide conformational changes in coupling to proton translocation.
    Singh A; Venning JD; Quirk PG; van Boxel GI; Rodrigues DJ; White SA; Jackson JB
    J Biol Chem; 2003 Aug; 278(35):33208-16. PubMed ID: 12791694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domains, specific residues and conformational states involved in hydride ion transfer and proton pumping by nicotinamide nucleotide transhydrogenase from Escherichia coli.
    Rydström J; Hu X; Fjellström O; Meuller J; Zhang J; Johansson C; Bizouarn T
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):10-6. PubMed ID: 9693716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer between the nicotinamide nucleotide transhydrogenase and ATP synthase of Escherichia coli.
    Graf SS; Hong S; Müller P; Gennis R; von Ballmoos C
    Sci Rep; 2021 Oct; 11(1):21234. PubMed ID: 34707181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of proton-translocating transhydrogenase.
    Jackson JB; Peake SJ; White SA
    FEBS Lett; 1999 Dec; 464(1-2):1-8. PubMed ID: 10611473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A change in ionization of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase regulates both hydride transfer and nucleotide release.
    Rodrigues DJ; Venning JD; Quirk PG; Jackson JB
    Eur J Biochem; 2001 Mar; 268(5):1430-8. PubMed ID: 11231296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinamide nucleotide transhydrogenase: a model for utilization of substrate binding energy for proton translocation.
    Hatefi Y; Yamaguchi M
    FASEB J; 1996 Mar; 10(4):444-52. PubMed ID: 8647343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.