BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31462779)

  • 1. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
    van Oosten ASG; Chen X; Chin L; Cruz K; Patteson AE; Pogoda K; Shenoy VB; Janmey PA
    Nature; 2019 Sep; 573(7772):96-101. PubMed ID: 31462779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loops versus lines and the compression stiffening of cells.
    Gandikota MC; Pogoda K; van Oosten A; Engstrom TA; Patteson AE; Janmey PA; Schwarz JM
    Soft Matter; 2020 May; 16(18):4389-4406. PubMed ID: 32249282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cells actively stiffen fibrin networks by generating contractile stress.
    Jansen KA; Bacabac RG; Piechocka IK; Koenderink GH
    Biophys J; 2013 Nov; 105(10):2240-51. PubMed ID: 24268136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic remodeling of fiber networks with stiff inclusions under compressive loading.
    Carroll B; Thanh MH; Patteson AE
    Acta Biomater; 2023 Jun; 163():106-116. PubMed ID: 36182057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compression stiffening of fibrous networks with stiff inclusions.
    Shivers JL; Feng J; van Oosten ASG; Levine H; Janmey PA; MacKintosh FC
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21037-21044. PubMed ID: 32817547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poroelasticity of (bio)polymer networks during compression: theory and experiment.
    Punter MTJJM; Vos BE; Mulder BM; Koenderink GH
    Soft Matter; 2020 Feb; 16(5):1298-1305. PubMed ID: 31922166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-scale strain-stiffening of semiflexible bundle networks.
    Piechocka IK; Jansen KA; Broedersz CP; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2016 Feb; 12(7):2145-56. PubMed ID: 26761718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening.
    van Oosten AS; Vahabi M; Licup AJ; Sharma A; Galie PA; MacKintosh FC; Janmey PA
    Sci Rep; 2016 Jan; 6():19270. PubMed ID: 26758452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear elasticity in biological gels.
    Storm C; Pastore JJ; MacKintosh FC; Lubensky TC; Janmey PA
    Nature; 2005 May; 435(7039):191-4. PubMed ID: 15889088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
    Goren S; Ergaz B; Barak D; Sorkin R; Lesman A
    Acta Biomater; 2024 Jun; 181():272-281. PubMed ID: 38685460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear mechanics of hybrid polymer networks that mimic the complex mechanical environment of cells.
    Jaspers M; Vaessen SL; van Schayik P; Voerman D; Rowan AE; Kouwer PHJ
    Nat Commun; 2017 May; 8():15478. PubMed ID: 28541273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels.
    Kang H; Wen Q; Janmey PA; Tang JX; Conti E; MacKintosh FC
    J Phys Chem B; 2009 Mar; 113(12):3799-805. PubMed ID: 19243107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the nonlinear mechanics of fibrin networks under compression.
    Kim OV; Litvinov RI; Weisel JW; Alber MS
    Biomaterials; 2014 Aug; 35(25):6739-49. PubMed ID: 24840618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural hierarchy governs fibrin gel mechanics.
    Piechocka IK; Bacabac RG; Potters M; Mackintosh FC; Koenderink GH
    Biophys J; 2010 May; 98(10):2281-9. PubMed ID: 20483337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of non-linearity on cell-ECM interactions.
    Wen Q; Janmey PA
    Exp Cell Res; 2013 Oct; 319(16):2481-9. PubMed ID: 23748051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrin mechanical properties and their structural origins.
    Litvinov RI; Weisel JW
    Matrix Biol; 2017 Jul; 60-61():110-123. PubMed ID: 27553509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.
    Nam S; Hu KH; Butte MJ; Chaudhuri O
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5492-7. PubMed ID: 27140623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique Role of Vimentin Networks in Compression Stiffening of Cells and Protection of Nuclei from Compressive Stress.
    Pogoda K; Byfield F; Deptuła P; Cieśluk M; Suprewicz Ł; Skłodowski K; Shivers JL; van Oosten A; Cruz K; Tarasovetc E; Grishchuk EL; Mackintosh FC; Bucki R; Patteson AE; Janmey PA
    Nano Lett; 2022 Jun; 22(12):4725-4732. PubMed ID: 35678828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.
    Kurniawan NA; Wong LH; Rajagopalan R
    Biomacromolecules; 2012 Mar; 13(3):691-8. PubMed ID: 22293015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal model for the inelastic mechanics of biopolymer networks and cells.
    Wolff L; Kroy K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):040901. PubMed ID: 23214521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.