BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31462796)

  • 1. Modern microprocessor built from complementary carbon nanotube transistors.
    Hills G; Lau C; Wright A; Fuller S; Bishop MD; Srimani T; Kanhaiya P; Ho R; Amer A; Stein Y; Murphy D; Arvind ; Chandrakasan A; Shulaker MM
    Nature; 2019 Aug; 572(7771):595-602. PubMed ID: 31462796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length.
    Pitner G; Hills G; Llinas JP; Persson KM; Park R; Bokor J; Mitra S; Wong HP
    Nano Lett; 2019 Feb; 19(2):1083-1089. PubMed ID: 30677297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable n-Type Doping of Carbon Nanotubes through Engineered Atomic Layer Deposition HfO
    Lau C; Srimani T; Bishop MD; Hills G; Shulaker MM
    ACS Nano; 2018 Nov; 12(11):10924-10931. PubMed ID: 30285415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube computer.
    Shulaker MM; Hills G; Patil N; Wei H; Chen HY; Wong HS; Mitra S
    Nature; 2013 Sep; 501(7468):526-30. PubMed ID: 24067711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube circuit integration up to sub-20 nm channel lengths.
    Shulaker MM; Van Rethy J; Wu TF; Liyanage LS; Wei H; Li Z; Pop E; Gielen G; Wong HS; Mitra S
    ACS Nano; 2014 Apr; 8(4):3434-43. PubMed ID: 24654597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Nanotubes for Radiation-Tolerant Electronics.
    Kanhaiya PS; Yu A; Netzer R; Kemp W; Doyle D; Shulaker MM
    ACS Nano; 2021 Nov; 15(11):17310-17318. PubMed ID: 34704446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hysteresis-Free Carbon Nanotube Field-Effect Transistors.
    Park RS; Hills G; Sohn J; Mitra S; Shulaker MM; Wong HP
    ACS Nano; 2017 May; 11(5):4785-4791. PubMed ID: 28463503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A natively flexible 32-bit Arm microprocessor.
    Biggs J; Myers J; Kufel J; Ozer E; Craske S; Sou A; Ramsdale C; Williamson K; Price R; White S
    Nature; 2021 Jul; 595(7868):532-536. PubMed ID: 34290427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A statistical-based material and process guidelines for design of carbon nanotube field-effect transistors in gigascale integrated circuits.
    Ghavami B; Raji M; Pedram H
    Nanotechnology; 2011 Aug; 22(34):345706. PubMed ID: 21811011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes.
    Ryu K; Badmaev A; Wang C; Lin A; Patil N; Gomez L; Kumar A; Mitra S; Wong HS; Zhou C
    Nano Lett; 2009 Jan; 9(1):189-97. PubMed ID: 19086836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors.
    Cao Q; Han SJ; Penumatcha AV; Frank MM; Tulevski GS; Tersoff J; Haensch WE
    ACS Nano; 2015 Feb; 9(2):1936-44. PubMed ID: 25652208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High speed capacitor-inverter based carbon nanotube full adder.
    Navi K; Rashtian M; Khatir A; Keshavarzian P; Hashemipour O
    Nanoscale Res Lett; 2010 Mar; 5(5):859-62. PubMed ID: 20671796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.
    Park RS; Shulaker MM; Hills G; Suriyasena Liyanage L; Lee S; Tang A; Mitra S; Wong HS
    ACS Nano; 2016 Apr; 10(4):4599-608. PubMed ID: 27002483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotube substituted source/drain regions for carbon nanotube transistors for VLSI circuits.
    Dutta S; Shankar B
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11015-8. PubMed ID: 22409046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thread-Like CMOS Logic Circuits Enabled by Reel-Processed Single-Walled Carbon Nanotube Transistors via Selective Doping.
    Heo JS; Kim T; Ban SG; Kim D; Lee JH; Jur JS; Kim MG; Kim YH; Hong Y; Park SK
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28628230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.
    Wang C; Ryu K; Badmaev A; Zhang J; Zhou C
    ACS Nano; 2011 Feb; 5(2):1147-53. PubMed ID: 21271709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.
    Yang Y; Ding L; Han J; Zhang Z; Peng LM
    ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides.
    Suriyasena Liyanage L; Xu X; Pitner G; Bao Z; Wong HS
    Nano Lett; 2014; 14(4):1884-90. PubMed ID: 24628497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A miniature electronic nose system based on an MWNT-polymer microsensor array and a low-power signal-processing chip.
    Chiu SW; Wu HC; Chou TI; Chen H; Tang KT
    Anal Bioanal Chem; 2014 Jun; 406(16):3985-94. PubMed ID: 24385138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors.
    Chen Z; Appenzeller J; Knoch J; Lin YM; Avouris P
    Nano Lett; 2005 Jul; 5(7):1497-502. PubMed ID: 16178264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.