These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31462906)

  • 1. Noninvasive determination of toxic stress biomarkers by high-throughput screening of photoautotrophic cell suspension cultures with multicolor fluorescence imaging.
    Segečová A; Pérez-Bueno ML; Barón M; Červený J; Roitsch TG
    Plant Methods; 2019; 15():100. PubMed ID: 31462906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorophyll
    Mishra KB; Mishra A; Novotná K; Rapantová B; Hodaňová P; Urban O; Klem K
    Plant Methods; 2016; 12():46. PubMed ID: 27872654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors.
    Küster A; Pohl K; Altenburger R
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):377-83. PubMed ID: 17993220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging.
    Feng X; Yu C; Chen Y; Peng J; Ye L; Shen T; Wen H; He Y
    Front Plant Sci; 2018; 9():468. PubMed ID: 29686693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomarkers in aquatic plants: selection and utility.
    Brain RA; Cedergreen N
    Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotyping of
    Yao J; Sun D; Cen H; Xu H; Weng H; Yuan F; He Y
    Front Plant Sci; 2018; 9():603. PubMed ID: 29868063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophyll Fluorescence Imaging-Based Duckweed Phenotyping to Assess Acute Phytotoxic Effects.
    Oláh V; Hepp A; Irfan M; Mészáros I
    Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis.
    Moustaka J; Moustakas M
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analyses of woody species exposed to air pollution based on ecophysiological measurements.
    Wen D; Kuang Y; Zhou G
    Environ Sci Pollut Res Int; 2004; 11(3):165-70. PubMed ID: 15259699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal(oid) oxide nanoparticles.
    Kalisz A; Kornaś A; Skoczowski A; Oliwa J; Jurkow R; Gil J; Sękara A; Sałata A; Caruso G
    BMC Plant Biol; 2023 Jun; 23(1):329. PubMed ID: 37340375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions.
    Mishra A; Heyer AG; Mishra KB
    Plant Methods; 2014; 10(1):38. PubMed ID: 25400689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal temporal-spatial fluorescence techniques for phenotyping nitrogen status in oilseed rape.
    Sun D; Xu H; Weng H; Zhou W; Liang Y; Dong X; He Y; Cen H
    J Exp Bot; 2020 Oct; 71(20):6429-6443. PubMed ID: 32777073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of
    Xia Q; Tang H; Fu L; Tan J; Govindjee G; Guo Y
    Plant Phenomics; 2023; 5():0034. PubMed ID: 37011261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress.
    Bresson J; Vasseur F; Dauzat M; Koch G; Granier C; Vile D
    Plant Methods; 2015; 11():23. PubMed ID: 25870650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum fluorescence and electron transport kinetics determined by light-induced fluorescence transients (LIFT) for photosynthesis phenotyping.
    Keller B; Vass I; Matsubara S; Paul K; Jedmowski C; Pieruschka R; Nedbal L; Rascher U; Muller O
    Photosynth Res; 2019 May; 140(2):221-233. PubMed ID: 30357678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum.
    Macedo RS; Lombardi AT; Omachi CY; Rörig LR
    Toxicol In Vitro; 2008 Apr; 22(3):716-22. PubMed ID: 18180139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet analysis of pulse-amplitude-modulated chlorophyll fluorescence for differentiation of plant samples.
    Guo Y; Zhou Y; Tan J
    J Theor Biol; 2015 Apr; 370():116-20. PubMed ID: 25665719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinction and characterisation of rice genotypes tolerant to combined stresses of salinity and partial submergence, proved by a high-resolution chlorophyll fluorescence imaging system.
    Pradhan B; Chakraborty K; Prusty N; ; Mukherjee AK; Chattopadhyay K; Sarkar RK
    Funct Plant Biol; 2019 Feb; 46(3):248-261. PubMed ID: 32172768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses.
    Tschiersch H; Junker A; Meyer RC; Altmann T
    Plant Methods; 2017; 13():54. PubMed ID: 28690669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.