These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31462915)

  • 1. Evidence for adaptive responses to historic drought across a native plant species range.
    Dickman EE; Pennington LK; Franks SJ; Sexton JP
    Evol Appl; 2019 Sep; 12(8):1569-1582. PubMed ID: 31462915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A resurrection study reveals limited evolution of phenology in response to recent climate change across the geographic range of the scarlet monkeyflower.
    Vtipil EE; Sheth SN
    Ecol Evol; 2020 Dec; 10(24):14165-14177. PubMed ID: 33391707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population responses to a historic drought across the range of the common monkeyflower (Mimulus guttatus).
    Kooyers NJ; Morioka KA; Colicchio JM; Clark KS; Donofrio A; Estill SK; Pascualy CR; Anderson IC; Hagler M; Cho C; Blackman BK
    Am J Bot; 2021 Feb; 108(2):284-296. PubMed ID: 33400274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local adaptation of seed and seedling traits along a natural aridity gradient may both predict and constrain adaptive responses to climate change.
    Christie K; Pierson NR; Lowry DB; Holeski LM
    Am J Bot; 2022 Oct; 109(10):1529-1544. PubMed ID: 36129014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate structures genetic variation across a species' elevation range: a test of range limits hypotheses.
    Sexton JP; Hufford MB; Bateman AC; Lowry DB; Meimberg H; Strauss SY; Rice KJ
    Mol Ecol; 2016 Feb; 25(4):911-28. PubMed ID: 26756973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local adaptation to an altitudinal gradient: the interplay between mean phenotypic trait variation and phenotypic plasticity in
    Syrotchen JM; Ferris KG
    bioRxiv; 2024 Jan; ():. PubMed ID: 37577559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary and plastic changes in a native annual plant after a historic drought.
    Lambrecht SC; Gujral AK; Renshaw LJ; Rosengreen LT
    Ecol Evol; 2020 Jun; 10(11):4570-4582. PubMed ID: 32551044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive limitations of white spruce populations to drought imply vulnerability to climate change in its western range.
    Sang Z; Sebastian-Azcona J; Hamann A; Menzel A; Hacke U
    Evol Appl; 2019 Oct; 12(9):1850-1860. PubMed ID: 31548862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus.
    Kooyers NJ; Greenlee AB; Colicchio JM; Oh M; Blackman BK
    New Phytol; 2015 Apr; 206(1):152-165. PubMed ID: 25407964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional differences in rapid evolution during severe drought.
    Anstett DN; Branch HA; Angert AL
    Evol Lett; 2021 Apr; 5(2):130-142. PubMed ID: 33868709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid-cycling Brassica rapa evolves even earlier flowering under experimental drought.
    Johnson SE; Hamann E; Franks SJ
    Am J Bot; 2022 Nov; 109(11):1683-1692. PubMed ID: 35587234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reforestation of high elevation pines: Direct seeding success depends on seed source and sowing environment.
    Hankin LE; Leger EA; Bisbing SM
    Ecol Appl; 2023 Sep; 33(6):e2897. PubMed ID: 37305925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic lags influence rapid evolution throughout a drought cycle.
    Branch HA; Anstett DN; Angert AL
    Evolution; 2024 May; 78(6):1067-1077. PubMed ID: 38490751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools.
    Franks SJ; Kane NC; O'Hara NB; Tittes S; Rest JS
    Mol Ecol; 2016 Aug; 25(15):3622-31. PubMed ID: 27072809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resurrected seeds from herbarium specimens reveal rapid evolution of drought resistance in a selfing annual.
    Christie K; Pierson NR; Holeski LM; Lowry DB
    Am J Bot; 2023 Dec; 110(12):e16265. PubMed ID: 38102863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic adaptation and phenotypic plasticity contribute to greater leaf hydraulic tolerance in response to drought in warmer climates.
    Blackman CJ; Aspinwall MJ; Tissue DT; Rymer PD
    Tree Physiol; 2017 May; 37(5):583-592. PubMed ID: 28338733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of plant drought strategies and herbivore tolerance after two decades of climate change.
    Rauschkolb R; Li Z; Godefroid S; Dixon L; Durka W; Májeková M; Bossdorf O; Ensslin A; Scheepens JF
    New Phytol; 2022 Jul; 235(2):773-785. PubMed ID: 35357713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two decades of evolutionary changes in Brassica rapa in response to fluctuations in precipitation and severe drought.
    Hamann E; Weis AE; Franks SJ
    Evolution; 2018 Dec; 72(12):2682-2696. PubMed ID: 30478889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, parallel evolution of field mustard (Brassica rapa) under experimental drought.
    Johnson SE; Hamann E; Franks SJ
    Evolution; 2022 Feb; 76(2):262-274. PubMed ID: 34878171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid adaptive evolution to drought in a subset of plant traits in a large-scale climate change experiment.
    Metz J; Lampei C; Bäumler L; Bocherens H; Dittberner H; Henneberg L; de Meaux J; Tielbörger K
    Ecol Lett; 2020 Nov; 23(11):1643-1653. PubMed ID: 32851791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.