These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 31463407)

  • 21. Thermo-catalytic co-pyrolysis of ironbark sawdust and plastic waste over strontium loaded hierarchical Y-zeolite.
    Dada TK; Islam MA; Vuppaladadiyam AK; Antunes E
    J Environ Manage; 2021 Dec; 299():113610. PubMed ID: 34474254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.
    Wu C; Nahil MA; Miskolczi N; Huang J; Williams PT
    Environ Sci Technol; 2014; 48(1):819-26. PubMed ID: 24283272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Trends in the Pyrolysis of Non-Degradable Waste Plastics.
    Gebre SH; Sendeku MG; Bahri M
    ChemistryOpen; 2021 Dec; 10(12):1202-1226. PubMed ID: 34873881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tandem pyrolysis-catalytic upgrading of plastic waste towards kerosene-range products using Si-pillared vermiculite with transition metal modification.
    Li K; Cai C; Zhou W; Wang Y; Amy TGY; Sun Z; Min Y
    J Hazard Mater; 2024 Mar; 465():133231. PubMed ID: 38141314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrolysis of waste expanded polystyrene and reduction of styrene via in-situ multiphase pyrolysis of product oil for the production of fuel range hydrocarbons.
    Verma A; Sharma S; Pramanik H
    Waste Manag; 2021 Feb; 120():330-339. PubMed ID: 33341659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.
    Wang Y; Dai L; Fan L; Cao L; Zhou Y; Zhao Y; Liu Y; Ruan R
    Waste Manag; 2017 Mar; 61():276-282. PubMed ID: 28129927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyethylene terephthalate conversion into liquid fuel by its co-pyrolysis with low- and high-density polyethylene employing scrape aluminium as catalyst.
    Gulab H; Malik S
    Environ Technol; 2024 Jul; 45(18):3721-3735. PubMed ID: 37326613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of Polypropylene Waste into Value-Added Products: A Greener Approach.
    Nisar J; Aziz M; Shah A; Shah I; Iqbal M
    Molecules; 2022 May; 27(9):. PubMed ID: 35566367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design.
    Sekar M; Ponnusamy VK; Pugazhendhi A; Nižetić S; Praveenkumar TR
    J Environ Manage; 2022 Jan; 302(Pt B):114046. PubMed ID: 34775338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic performance and debromination of Fe-Ni bimetallic MCM-41 catalyst for the two-stage pyrolysis of waste computer casing plastic.
    Chen T; Yu J; Ma C; Bikane K; Sun L
    Chemosphere; 2020 Jun; 248():125964. PubMed ID: 32004884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deoxygenation of pyrolysis vapour derived from durian shell using catalysts prepared from industrial wastes rich in Ca, Fe, Si and Al.
    Tan YL; Hameed BH; Abdullah AZ
    Sci Total Environ; 2020 Feb; 703():134902. PubMed ID: 31753498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics.
    Mateo W; Lei H; Villota E; Qian M; Zhao Y; Huo E; Zhang Q; Lin X; Wang C; Huang Z
    Bioresour Technol; 2020 Feb; 297():122411. PubMed ID: 31767431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic pyrolysis of waste polypropylene using low-cost natural catalysts.
    Eldahshory AI; Emara K; Abd-Elhady MS; Ismail MA
    Sci Rep; 2023 Jul; 13(1):11766. PubMed ID: 37474551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil.
    Baena-González J; Santamaria-Echart A; Aguirre JL; González S
    Waste Manag; 2020 Dec; 118():139-149. PubMed ID: 32892091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly efficient catalytic pyrolysis of polyethylene waste to derive fuel products by novel polyoxometalate/kaolin composites.
    Attique S; Batool M; Yaqub M; Goerke O; Gregory DH; Shah AT
    Waste Manag Res; 2020 Jun; 38(6):689-695. PubMed ID: 32026752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High quality liquid fuel production from waste plastics via two-step cracking route in a bottom-up approach using bi-functional Fe/HZSM-5 catalyst.
    Dwivedi U; Naik SN; Pant KK
    Waste Manag; 2021 Aug; 132():151-161. PubMed ID: 34333250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of hydrogen-rich fuel gas from waste plastics using continuous plasma pyrolysis reactor.
    Bhatt KP; Patel S; Upadhyay DS; Patel RN
    J Environ Manage; 2024 Apr; 356():120446. PubMed ID: 38484595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons.
    Ryu HW; Kim DH; Jae J; Lam SS; Park ED; Park YK
    Bioresour Technol; 2020 Aug; 310():123473. PubMed ID: 32389430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel.
    Das P; Tiwari P
    Waste Manag; 2018 Sep; 79():615-624. PubMed ID: 30343794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO
    Syguła E; Świechowski K; Stępień P; Koziel JA; Białowiec A
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.