These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 31463545)
1. Acidithiobacillus thiooxidans and its potential application. Yang L; Zhao D; Yang J; Wang W; Chen P; Zhang S; Yan L Appl Microbiol Biotechnol; 2019 Oct; 103(19):7819-7833. PubMed ID: 31463545 [TBL] [Abstract][Full Text] [Related]
2. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. Valdes J; Ossandon F; Quatrini R; Dopson M; Holmes DS J Bacteriol; 2011 Dec; 193(24):7003-4. PubMed ID: 22123759 [TBL] [Abstract][Full Text] [Related]
3. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. Yin H; Zhang X; Li X; He Z; Liang Y; Guo X; Hu Q; Xiao Y; Cong J; Ma L; Niu J; Liu X BMC Microbiol; 2014 Jul; 14():179. PubMed ID: 24993543 [TBL] [Abstract][Full Text] [Related]
4. Characterization of tetrathionate hydrolase from the marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Kanao T; Onishi M; Kajitani Y; Hashimoto Y; Toge T; Kikukawa H; Kamimura K Biosci Biotechnol Biochem; 2018 Jan; 82(1):152-160. PubMed ID: 29303046 [TBL] [Abstract][Full Text] [Related]
5. Acidithiobacillus ferrooxidans and its potential application. Zhang S; Yan L; Xing W; Chen P; Zhang Y; Wang W Extremophiles; 2018 Jul; 22(4):563-579. PubMed ID: 29696439 [TBL] [Abstract][Full Text] [Related]
6. Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Suzuki I; Lee D; Mackay B; Harahuc L; Oh JK Appl Environ Microbiol; 1999 Nov; 65(11):5163-8. PubMed ID: 10543839 [TBL] [Abstract][Full Text] [Related]
7. Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low-grade chalcopyrite based on physiological and comparative transcriptomic analysis. Yin Z; Feng S; Tong Y; Yang H J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1643-1656. PubMed ID: 31420797 [TBL] [Abstract][Full Text] [Related]
8. Marine acidophilic sulfur-oxidizing bacterium requiring salts for the oxidation of reduced inorganic sulfur compounds. Kamimura K; Higashino E; Moriya S; Sugio T Extremophiles; 2003 Apr; 7(2):95-9. PubMed ID: 12664261 [TBL] [Abstract][Full Text] [Related]
9. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters. Huber B; Herzog B; Drewes JE; Koch K; Müller E BMC Microbiol; 2016 Jul; 16(1):153. PubMed ID: 27430211 [TBL] [Abstract][Full Text] [Related]
10. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. Wang YS; Pan ZY; Lang JM; Xu JM; Zheng YG J Hazard Mater; 2007 Aug; 147(1-2):319-24. PubMed ID: 17275185 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum. Xu Y; Yin H; Jiang H; Liang Y; Guo X; Ma L; Xiao Y; Liu X Arch Microbiol; 2013 Sep; 195(9):637-46. PubMed ID: 23861147 [TBL] [Abstract][Full Text] [Related]
12. Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans. Bobadilla Fazzini RA; Cortés MP; Padilla L; Maturana D; Budinich M; Maass A; Parada P Biotechnol Bioeng; 2013 Aug; 110(8):2242-51. PubMed ID: 23436458 [TBL] [Abstract][Full Text] [Related]
13. The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil. Ko MS; Park HS; Kim KW; Lee JU Environ Geochem Health; 2013 Dec; 35(6):727-33. PubMed ID: 23709230 [TBL] [Abstract][Full Text] [Related]
14. [Oxidation of elementary sulfur by Thiobacillus thiooxidans]. Karavaĭko GI; Pivovarova TA Mikrobiologiia; 1973; 42(2):389-95. PubMed ID: 4597880 [No Abstract] [Full Text] [Related]
15. The bioleaching potential of a bacterial consortium. Latorre M; Cortés MP; Travisany D; Di Genova A; Budinich M; Reyes-Jara A; Hödar C; González M; Parada P; Bobadilla-Fazzini RA; Cambiazo V; Maass A Bioresour Technol; 2016 Oct; 218():659-66. PubMed ID: 27416516 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation and carbon dioxide fixation in the autotrophic bacterium, Thiobacillus thiooxidans. UMBREIT WW J Bacteriol; 1954 Apr; 67(4):387-93. PubMed ID: 13152048 [No Abstract] [Full Text] [Related]
17. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Brock TD; Gustafson J Appl Environ Microbiol; 1976 Oct; 32(4):567-71. PubMed ID: 825043 [TBL] [Abstract][Full Text] [Related]
18. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. Lee EY; Lee NY; Cho KS; Ryu HW J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938 [TBL] [Abstract][Full Text] [Related]
19. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Okabe S; Odagiri M; Ito T; Satoh H Appl Environ Microbiol; 2007 Feb; 73(3):971-80. PubMed ID: 17142362 [TBL] [Abstract][Full Text] [Related]
20. Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Kamimura K; Higashino E; Kanao T; Sugio T Extremophiles; 2005 Feb; 9(1):45-51. PubMed ID: 15375674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]