These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31463616)

  • 1. Spin-Resolved Electronic and Transport Properties of Graphyne-Based Nanojunctions with Different N-Substituting Positions.
    Li X; Li Y; Zhang X; Long M; Zhou G
    Nanoscale Res Lett; 2019 Aug; 14(1):299. PubMed ID: 31463616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.
    Wu W; Guo W; Zeng XC
    Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain Investigation on Spin-Dependent Transport Properties of γ-Graphyne Nanoribbon Between Gold Electrodes.
    Li Y; Li X; Zhang S; Cao L; Ouyang F; Long M
    Nanoscale Res Lett; 2021 Jan; 16(1):5. PubMed ID: 33409606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons.
    Kumar J; Nemade HB; Giri PK
    Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation.
    Guo C; Wang T; Xia C; Liu Y
    Sci Rep; 2017 Oct; 7(1):12799. PubMed ID: 28993688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electronic properties of non-conventional
    Oliveira TA; Silva PV; Girão EC
    Phys Chem Chem Phys; 2022 Nov; 24(43):26813-26827. PubMed ID: 36314734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene.
    Li XF; Lian KY; Qiu Q; Luo Y
    Nanoscale; 2015 Mar; 7(9):4156-62. PubMed ID: 25665635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-resolved transport of multifunctional C
    Xiong S; Dong X; Xie L; Guan Z; Long M; Chen T
    J Phys Condens Matter; 2023 Jun; 35(39):. PubMed ID: 37336211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design.
    Ni Y; Wang X; Tao W; Zhu SC; Yao KL
    Sci Rep; 2016 May; 6():25914. PubMed ID: 27180808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant magnetoresistance and dual spin filtering effect in ferromagnetic 6,6,12/γ-graphyne zigzag nanoribbon lateral heterojunction.
    Zhang L; Yang Y; Chen J; Zheng X; Zhang L; Xiao L; Jia S
    Phys Chem Chem Phys; 2020 Sep; 22(33):18548-18555. PubMed ID: 32781462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The spin filtering effect and negative differential behavior of the graphene-pentalene-graphene molecular junction: a theoretical analysis.
    Bhattacharya B; Mondal R; Sarkar U
    J Mol Model; 2018 Sep; 24(10):278. PubMed ID: 30209667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transport properties and new device design: the case of 6,6,12-graphyne nanoribbons.
    Ni Y; Yao KL; Fu HH; Gao GY; Zhu SC; Luo B; Wang SL; Li RX
    Nanoscale; 2013 May; 5(10):4468-75. PubMed ID: 23584607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain modulation on the spin transport properties of PTB junctions with MoC
    Sun Y; Zhang B; Zhang S; Zhang D; Dong J; Long M
    Phys Chem Chem Phys; 2022 Feb; 24(6):3875-3885. PubMed ID: 35088774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remarkable negative differential resistance and perfect spin-filtering effects of the indium triphosphide (InP
    Zhang S; Xie Y; Hu Y; Niu X; Wang Y
    Phys Chem Chem Phys; 2018 Nov; 20(46):29440-29445. PubMed ID: 30452033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic properties of four typical zigzag-edged graphyne nanoribbons.
    Yu G; Liu Z; Gao W; Zheng Y
    J Phys Condens Matter; 2013 Jul; 25(28):285502. PubMed ID: 23793076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative differential resistance devices by using N-doped graphene nanoribbons.
    Huang J; Wang W; Li Q; Yang J
    J Chem Phys; 2014 Apr; 140(16):164703. PubMed ID: 24784295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons.
    Javan M; Jorjani R; Soltani AR
    J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfect spin Seebeck effect, spin-valve, spin-filter and spin-rectification based on the heterojunction of sawtooth graphene and graphyne nanoribbons.
    Ni Y; Hua H; Li J; Hu N
    Nanoscale; 2022 Mar; 14(10):3818-3825. PubMed ID: 35191456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The half-metallicity and the spin filtering, NDR and spin Seebeck effects in 2D Ag-doped SnSe
    Wu X; Xiong L; Feng Y; Wang C; Gao G
    J Chem Phys; 2019 Feb; 150(6):064701. PubMed ID: 30769985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Doping of Organic and Coordination Polymers for Thermoelectric and Spintronic Applications: A Theoretical Understanding.
    Wang D; Yu H; Shi W; Xu C
    Acc Chem Res; 2023 Aug; 56(16):2127-2138. PubMed ID: 37432731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.