These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 31463704)

  • 1. Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Dec; 33(12):1045-1055. PubMed ID: 31463704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Jan; 33(1):47-59. PubMed ID: 30084081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015.
    Kumar A; Zhang KY
    J Comput Aided Mol Des; 2016 Sep; 30(9):685-693. PubMed ID: 27484214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pose prediction approach based on ligand 3D shape similarity.
    Kumar A; Zhang KY
    J Comput Aided Mol Des; 2016 Jun; 30(6):457-69. PubMed ID: 27379501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo on the manifold and MD refinement for binding pose prediction of protein-ligand complexes: 2017 D3R Grand Challenge.
    Ignatov M; Liu C; Alekseenko A; Sun Z; Padhorny D; Kotelnikov S; Kazennov A; Grebenkin I; Kholodov Y; Kolosvari I; Perez A; Dill K; Kozakov D
    J Comput Aided Mol Des; 2019 Jan; 33(1):119-127. PubMed ID: 30421350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016.
    Fradera X; Verras A; Hu Y; Wang D; Wang H; Fells JI; Armacost KA; Crespo A; Sherborne B; Wang H; Peng Z; Gao YD
    J Comput Aided Mol Des; 2018 Jan; 32(1):113-127. PubMed ID: 28913710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU.
    Santos-Martins D; Eberhardt J; Bianco G; Solis-Vasquez L; Ambrosio FA; Koch A; Forli S
    J Comput Aided Mol Des; 2019 Dec; 33(12):1071-1081. PubMed ID: 31691920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X; Man VH; Ji B; Xie XQ; Wang J
    J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2.
    Athanasiou C; Vasilakaki S; Dellis D; Cournia Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting binding poses and affinity ranking in D3R Grand Challenge using PL-PatchSurfer2.0.
    Shin WH; Kihara D
    J Comput Aided Mol Des; 2019 Dec; 33(12):1083-1094. PubMed ID: 31506789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons learned from participating in D3R 2016 Grand Challenge 2: compounds targeting the farnesoid X receptor.
    Duan R; Xu X; Zou X
    J Comput Aided Mol Des; 2018 Jan; 32(1):103-111. PubMed ID: 29127582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4.
    Lam PC; Abagyan R; Totrov M
    J Comput Aided Mol Des; 2019 Dec; 33(12):1057-1069. PubMed ID: 31598897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method.
    Hogues H; Sulea T; Gaudreault F; Corbeil CR; Purisima EO
    J Comput Aided Mol Des; 2018 Jan; 32(1):143-150. PubMed ID: 28983727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cross docking pipeline for improving pose prediction and virtual screening performance.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2018 Jan; 32(1):163-173. PubMed ID: 28836076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges.
    Nguyen DD; Cang Z; Wu K; Wang M; Cao Y; Wei GW
    J Comput Aided Mol Des; 2019 Jan; 33(1):71-82. PubMed ID: 30116918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D3R Grand Challenge 4: ligand similarity and MM-GBSA-based pose prediction and affinity ranking for BACE-1 inhibitors.
    Sasmal S; El Khoury L; Mobley DL
    J Comput Aided Mol Des; 2020 Feb; 34(2):163-177. PubMed ID: 31781990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid receptor structure/ligand-based docking and activity prediction in ICM: development and evaluation in D3R Grand Challenge 3.
    Lam PC; Abagyan R; Totrov M
    J Comput Aided Mol Des; 2019 Jan; 33(1):35-46. PubMed ID: 30094533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved pose and affinity predictions using different protocols tailored on the basis of data availability.
    Prathipati P; Nagao C; Ahmad S; Mizuguchi K
    J Comput Aided Mol Des; 2016 Sep; 30(9):817-828. PubMed ID: 27714493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3.
    Koukos PI; Xue LC; Bonvin AMJJ
    J Comput Aided Mol Des; 2019 Jan; 33(1):83-91. PubMed ID: 30128928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015.
    Slynko I; Da Silva F; Bret G; Rognan D
    J Comput Aided Mol Des; 2016 Sep; 30(9):669-683. PubMed ID: 27480696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.