BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31464094)

  • 1. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces.
    Ferguson M; Sharma D; Ross D; Zhao F
    Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex.
    Abbott JR; Jeakle EN; Haghighi P; Usoro JO; Sturgill BS; Wu Y; Geramifard N; Radhakrishna R; Patnaik S; Nakajima S; Hess J; Mehmood Y; Devata V; Vijayakumar G; Sood A; Doan Thai TT; Dogra K; Hernandez-Reynoso AG; Pancrazio JJ; Cogan SF
    Biomaterials; 2024 Jul; 308():122543. PubMed ID: 38547834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice.
    Chen K; Forrest AM; Burgos GG; Kozai TDY
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38788704
    [No Abstract]   [Full Text] [Related]  

  • 4. Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays.
    Vitale F; Shen W; Driscoll N; Burrell JC; Richardson AG; Adewole O; Murphy B; Ananthakrishnan A; Oh H; Wang T; Lucas TH; Cullen DK; Allen MG; Litt B
    PLoS One; 2018; 13(11):e0206137. PubMed ID: 30383805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Library of Polymer-based Microelectrode Array Designs for Recording from the Brain of Different Animal Models.
    Xu H; Scholten K; Li Z; Meng E; Song D
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantable Neural Microelectrodes: How to Reduce Immune Response.
    Xiang Y; Zhao Y; Cheng T; Sun S; Wang J; Pei R
    ACS Biomater Sci Eng; 2024 May; 10(5):2762-2783. PubMed ID: 38591141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation.
    Li F; Gallego J; Tirko NN; Greaser J; Bashe D; Patel R; Shaker E; Van Valkenburg GE; Alsubhi AS; Wellman S; Singh V; Padilla CG; Gheres KW; Broussard JI; Bagwell R; Mulvihill M; Kozai TDY
    Nat Commun; 2024 Jun; 15(1):5512. PubMed ID: 38951525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode sharpness and insertion speed reduce tissue damage near high-density penetrating arrays.
    McNamara IN; Wellman SM; Li L; Eles JR; Savya S; Sohal HS; Angle MR; Kozai TDY
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38518365
    [No Abstract]   [Full Text] [Related]  

  • 9. The complement cascade at the Utah microelectrode-tissue interface.
    Bennett C; Álvarez-Ciara A; Franklin M; Dietrich WD; Prasad A
    Biomaterials; 2021 Jan; 268():120583. PubMed ID: 33310540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Customizable 3D Microelectrode Arrays for In Vitro and In Vivo Neuronal Tissue Recordings.
    Abu Shihada J; Jung M; Decke S; Koschinski L; Musall S; Rincón Montes V; Offenhäusser A
    Adv Sci (Weinh); 2024 Apr; 11(13):e2305944. PubMed ID: 38240370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of insertion methods for surgical placement of penetrating neural interfaces.
    Thielen B; Meng E
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33845469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in conductive hydrogels for neural recording and stimulation.
    Dawit H; Zhao Y; Wang J; Pei R
    Biomater Sci; 2024 May; 12(11):2786-2800. PubMed ID: 38682423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation.
    Wellman SM; Kozai TDY
    Biomaterials; 2018 May; 164():121-133. PubMed ID: 29501892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Animal Studies to Reduce the Foreign Body Reaction in Brain-Computer Interfaces: A Systematic Review.
    Mian SY; Honey JR; Carnicer-Lombarte A; Barone DG
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube Modified Microelectrode Array for Neural Interface.
    Vafaiee M; Mohammadpour R; Vossoughi M; Asadian E; Janahmadi M; Sasanpour P
    Front Bioeng Biotechnol; 2020; 8():582713. PubMed ID: 33520951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal functional connectivity is impaired in a layer dependent manner near the chronically implanted microelectrodes.
    Chen K; Forrest A; Gonzalez Burgos G; Kozai TDY
    bioRxiv; 2023 Nov; ():. PubMed ID: 37986883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes.
    Gori M; Vadalà G; Giannitelli SM; Denaro V; Di Pino G
    Front Bioeng Biotechnol; 2021; 9():659033. PubMed ID: 34113605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress on Microelectrodes in Neural Interfaces.
    Kim GH; Kim K; Lee E; An T; Choi W; Lim G; Shin JH
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30332782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of organic and inorganic biomaterials for neural interfaces.
    Fattahi P; Yang G; Kim G; Abidian MR
    Adv Mater; 2014 Mar; 26(12):1846-85. PubMed ID: 24677434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thinking Small: Progress on Microscale Neurostimulation Technology.
    Pancrazio JJ; Deku F; Ghazavi A; Stiller AM; Rihani R; Frewin CL; Varner VD; Gardner TJ; Cogan SF
    Neuromodulation; 2017 Dec; 20(8):745-752. PubMed ID: 29076214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.