These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

755 related articles for article (PubMed ID: 31464116)

  • 21. T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas.
    Tang WT; Su CQ; Lin J; Xia ZW; Lu SS; Hong XN
    Clin Radiol; 2024 May; 79(5):e750-e758. PubMed ID: 38360515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study.
    Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J
    J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas.
    Park CJ; Han K; Kim H; Ahn SS; Choi YS; Park YW; Chang JH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Dec; 30(12):6464-6474. PubMed ID: 32740813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of Glioma enhancement pattern using a MRI radiomics-based model.
    Wang W; Wang Y; Meng W; Guo E; He H; Huang G; He W; Wu Y
    Medicine (Baltimore); 2024 Sep; 103(36):e39512. PubMed ID: 39252245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging.
    Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK
    Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diagnostic Accuracy of Machine Learning-Based Radiomics in Grading Gliomas: Systematic Review and Meta-Analysis.
    Sohn CK; Bisdas S
    Contrast Media Mol Imaging; 2020; 2020():2127062. PubMed ID: 33746649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y
    Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading.
    Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I
    Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Predicting cerebral glioma enhancement pattern using a machine learning-based magnetic resonance imaging radiomics model].
    He H; Guo E; Meng W; Wang Y; Wang W; He W; Wu Y; Yang W
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):194-200. PubMed ID: 38293992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas.
    Liu Z; Wang Y; Liu X; Du Y; Tang Z; Wang K; Wei J; Dong D; Zang Y; Dai J; Jiang T; Tian J
    Neuroimage Clin; 2018; 19():271-278. PubMed ID: 30035021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas.
    Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W
    Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study.
    Yimit Y; Yasin P; Tuersun A; Wang J; Wang X; Huang C; Abudoubari S; Chen X; Ibrahim I; Nijiati P; Wang Y; Zou X; Nijiati M
    Acad Radiol; 2024 Aug; 31(8):3384-3396. PubMed ID: 38508934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status.
    Park CJ; Choi YS; Park YW; Ahn SS; Kang SG; Chang JH; Kim SH; Lee SK
    Neuroradiology; 2020 Mar; 62(3):319-326. PubMed ID: 31820065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiomics features based on T2-weighted fluid-attenuated inversion recovery MRI predict the expression levels of
    Wang Z; Tang X; Wu J; Zhang Z; He K; Wu D; Chen S; Xiao X
    Future Oncol; 2022 Mar; 18(7):807-819. PubMed ID: 34783576
    [No Abstract]   [Full Text] [Related]  

  • 36. Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas.
    Ma A; Yan X; Qu Y; Wen H; Zou X; Liu X; Lu M; Mo J; Wen Z
    BMC Med Imaging; 2024 Apr; 24(1):85. PubMed ID: 38600452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning-based multiparametric magnetic resonance imaging radiomics model for distinguishing central neurocytoma from glioma of lateral ventricle.
    Mo H; Liang W; Huang Z; Li X; Xiao X; Liu H; He J; Xu Y; Wu Y
    Eur Radiol; 2023 Jun; 33(6):4259-4269. PubMed ID: 36547672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning.
    Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A
    Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An investigation of machine learning methods in delta-radiomics feature analysis.
    Chang Y; Lafata K; Sun W; Wang C; Chang Z; Kirkpatrick JP; Yin FF
    PLoS One; 2019; 14(12):e0226348. PubMed ID: 31834910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain.
    Su X; Chen N; Sun H; Liu Y; Yang X; Wang W; Zhang S; Tan Q; Su J; Gong Q; Yue Q
    Neuro Oncol; 2020 Mar; 22(3):393-401. PubMed ID: 31563963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.