These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31464644)

  • 1. A new family of uncultivated bacteria involved in methanogenesis from the ubiquitous osmolyte glycine betaine in coastal saltmarsh sediments.
    Jones HJ; Kröber E; Stephenson J; Mausz MA; Jameson E; Millard A; Purdy KJ; Chen Y
    Microbiome; 2019 Aug; 7(1):120. PubMed ID: 31464644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment.
    Jameson E; Stephenson J; Jones H; Millard A; Kaster AK; Purdy KJ; Airs R; Murrell JC; Chen Y
    ISME J; 2019 Feb; 13(2):277-289. PubMed ID: 30206424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteria and Archaea Synergistically Convert Glycine Betaine to Biogenic Methane in the Formosa Cold Seep of the South China Sea.
    Li L; Zhang W; Zhang S; Song L; Sun Q; Zhang H; Xiang H; Dong X
    mSystems; 2021 Oct; 6(5):e0070321. PubMed ID: 34491083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism.
    Broman E; Sjöstedt J; Pinhassi J; Dopson M
    Microbiome; 2017 Aug; 5(1):96. PubMed ID: 28793929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.
    Chen J; Zhou Z; Gu JD
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1463-73. PubMed ID: 25219532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190.
    Newberry CJ; Webster G; Cragg BA; Parkes RJ; Weightman AJ; Fry JC
    Environ Microbiol; 2004 Mar; 6(3):274-87. PubMed ID: 14871211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.
    Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes.
    Inagaki F; Tsunogai U; Suzuki M; Kosaka A; Machiyama H; Takai K; Nunoura T; Nealson KH; Horikoshi K
    Appl Environ Microbiol; 2004 Dec; 70(12):7445-55. PubMed ID: 15574947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.
    Bhattarai S; Cassarini C; Gonzalez-Gil G; Egger M; Slomp CP; Zhang Y; Esposito G; Lens PNL
    Microb Ecol; 2017 Oct; 74(3):608-622. PubMed ID: 28389729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems.
    Dalcin Martins P; Danczak RE; Roux S; Frank J; Borton MA; Wolfe RA; Burris MN; Wilkins MJ
    Microbiome; 2018 Aug; 6(1):138. PubMed ID: 30086797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments.
    Shen LD; Hu BL; Liu S; Chai XP; He ZF; Ren HX; Liu Y; Geng S; Wang W; Tang JL; Wang YM; Lou LP; Xu XY; Zheng P
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7171-80. PubMed ID: 27225473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).
    Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ
    Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe.
    Kadnikov VV; Savvichev AS; Mardanov AV; Beletsky AV; Merkel AY; Ravin NV; Pimenov NV
    Antonie Van Leeuwenhoek; 2019 Dec; 112(12):1801-1814. PubMed ID: 31372944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments.
    Webster G; Parkes RJ; Fry JC; Weightman AJ
    Appl Environ Microbiol; 2004 Sep; 70(9):5708-13. PubMed ID: 15345467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.
    Lösekann T; Knittel K; Nadalig T; Fuchs B; Niemann H; Boetius A; Amann R
    Appl Environ Microbiol; 2007 May; 73(10):3348-62. PubMed ID: 17369343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.
    Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R
    Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing.
    Webster G; Rinna J; Roussel EG; Fry JC; Weightman AJ; Parkes RJ
    FEMS Microbiol Ecol; 2010 May; 72(2):179-97. PubMed ID: 20337706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes.
    Espínola F; Dionisi HM; Borglin S; Brislawn CJ; Jansson JK; Mac Cormack WP; Carroll J; Sjöling S; Lozada M
    Microb Ecol; 2018 Jan; 75(1):123-139. PubMed ID: 28702706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Impacts of Anthropogenic Disturbance on Seawater and Sediment Microbial Communities in Korean Coastal Waters Using Metagenomics Analysis.
    Won NI; Kim KH; Kang JH; Park SR; Lee HJ
    Int J Environ Res Public Health; 2017 Jan; 14(2):. PubMed ID: 28134828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt.
    Jungbluth SP; Bowers RM; Lin HT; Cowen JP; Rappé MS
    ISME J; 2016 Aug; 10(8):2033-47. PubMed ID: 26872042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.