BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 31465135)

  • 1. Constrained Nanoparticles Deliver siRNA and sgRNA to T Cells In Vivo without Targeting Ligands.
    Lokugamage MP; Sago CD; Gan Z; Krupczak BR; Dahlman JE
    Adv Mater; 2019 Oct; 31(41):e1902251. PubMed ID: 31465135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles That Deliver RNA to Bone Marrow Identified by in Vivo Directed Evolution.
    Sago CD; Lokugamage MP; Islam FZ; Krupczak BR; Sato M; Dahlman JE
    J Am Chem Soc; 2018 Dec; 140(49):17095-17105. PubMed ID: 30394729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery.
    Paunovska K; Gil CJ; Lokugamage MP; Sago CD; Sato M; Lando GN; Gamboa Castro M; Bryksin AV; Dahlman JE
    ACS Nano; 2018 Aug; 12(8):8341-8349. PubMed ID: 30016076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid.
    Suzuki Y; Ishihara H
    Int J Pharm; 2016 Aug; 510(1):350-8. PubMed ID: 27374199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing.
    Sago CD; Lokugamage MP; Paunovska K; Vanover DA; Monaco CM; Shah NN; Gamboa Castro M; Anderson SE; Rudoltz TG; Lando GN; Munnilal Tiwari P; Kirschman JL; Willett N; Jang YC; Santangelo PJ; Bryksin AV; Dahlman JE
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):E9944-E9952. PubMed ID: 30275336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Delivery of siRNA to Retinal Ganglion Cells by Intravitreal Lipid Nanoparticles of Positive Charge.
    Huang X; Chau Y
    Mol Pharm; 2021 Jan; 18(1):377-385. PubMed ID: 33295773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo.
    Ni H; Hatit MZC; Zhao K; Loughrey D; Lokugamage MP; Peck HE; Cid AD; Muralidharan A; Kim Y; Santangelo PJ; Dahlman JE
    Nat Commun; 2022 Aug; 13(1):4766. PubMed ID: 35970837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles.
    Sato Y; Okabe N; Note Y; Hashiba K; Maeki M; Tokeshi M; Harashima H
    Acta Biomater; 2020 Jan; 102():341-350. PubMed ID: 31733331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA.
    Sato Y; Matsui H; Sato R; Harashima H
    J Control Release; 2018 Aug; 284():179-187. PubMed ID: 29936118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation.
    Kubota K; Onishi K; Sawaki K; Li T; Mitsuoka K; Sato T; Takeoka S
    Int J Nanomedicine; 2017; 12():5121-5133. PubMed ID: 28790820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of an in vitro assay to screen lipid based nanoparticles for siRNA delivery.
    Zhang Y; Arrington L; Boardman D; Davis J; Xu Y; DiFelice K; Stirdivant S; Wang W; Budzik B; Bawiec J; Deng J; Beutner G; Seifried D; Stanton M; Gindy M; Leone A
    J Control Release; 2014 Jan; 174():7-14. PubMed ID: 24240015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating impacts of surface charge on intraocular distribution of intravitreal lipid nanoparticles.
    Huang X; Chau Y
    Exp Eye Res; 2019 Sep; 186():107711. PubMed ID: 31238078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Combinatorial Library of Lipid Nanoparticles for RNA Delivery to Leukocytes.
    Ramishetti S; Hazan-Halevy I; Palakuri R; Chatterjee S; Naidu Gonna S; Dammes N; Freilich I; Kolik Shmuel L; Danino D; Peer D
    Adv Mater; 2020 Mar; 32(12):e1906128. PubMed ID: 31999380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery.
    Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo.
    Sato Y; Hashiba K; Sasaki K; Maeki M; Tokeshi M; Harashima H
    J Control Release; 2019 Feb; 295():140-152. PubMed ID: 30610950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes.
    Hashiba K; Sato Y; Harashima H
    J Control Release; 2017 Sep; 262():239-246. PubMed ID: 28774839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
    Ball RL; Hajj KA; Vizelman J; Bajaj P; Whitehead KA
    Nano Lett; 2018 Jun; 18(6):3814-3822. PubMed ID: 29694050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticles containing constrained phospholipids deliver mRNA to liver immune cells in vivo without targeting ligands.
    Gan Z; Lokugamage MP; Hatit MZC; Loughrey D; Paunovska K; Sato M; Cristian A; Dahlman JE
    Bioeng Transl Med; 2020 Sep; 5(3):e10161. PubMed ID: 33758781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells.
    Khare P; Dave KM; Kamte YS; Manoharan MA; O'Donnell LA; Manickam DS
    AAPS J; 2021 Dec; 24(1):8. PubMed ID: 34873640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography.
    Zhang J; Haas RM; Leone AM
    Anal Chem; 2012 Jul; 84(14):6088-96. PubMed ID: 22816783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.