These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31465225)

  • 41. The predatory life cycle of Myxococcus xanthus.
    Keane R; Berleman J
    Microbiology (Reading); 2016 Jan; 162(1):1-11. PubMed ID: 26518442
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substrate specificity of Nudix hydrolases from Myxococcus xanthus.
    Kimura Y; Yamamoto Y; Kajimoto S; Sakai A; Takegawa K
    J Gen Appl Microbiol; 2018 May; 64(2):94-98. PubMed ID: 29367493
    [No Abstract]   [Full Text] [Related]  

  • 43. The Myxococcus xanthus developmentally expressed asgB-dependent genes can be targets of the A signal-generating or A signal-responding pathway.
    Bowden MG; Kaplan HB
    J Bacteriol; 1996 Nov; 178(22):6628-31. PubMed ID: 8932321
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of a mutant locus that bypasses the BsgA protease requirement for social development in Myxococcus xanthus.
    Cusick JK; Hager E; Gill RE
    FEMS Microbiol Lett; 2015 Jan; 362(1):1-8. PubMed ID: 25790505
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Myxococcus xanthus truncated globin HbO: in silico analysis and functional characterization.
    Singh SK; Kaur R; Kumar A; Kaur R
    Mol Biol Rep; 2019 Apr; 46(2):2101-2110. PubMed ID: 30729391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Similarity between the Myxococcus xanthus and Stigmatella aurantiaca reverse transcriptase genes associated with multicopy, single-stranded DNA.
    Hsu MY; Xu C; Inouye M; Inouye S
    J Bacteriol; 1992 Apr; 174(7):2384-7. PubMed ID: 1372604
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purification and in vitro phosphorylation of Myxococcus xanthus AsgA protein.
    Li Y; Plamann L
    J Bacteriol; 1996 Jan; 178(1):289-92. PubMed ID: 8550431
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conversion of the lycopene monocyclase of Myxococcus xanthus into a bicyclase.
    Iniesta AA; Cervantes M; Murillo FJ
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):793-802. PubMed ID: 18437372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EspC is involved in controlling the timing of development in Myxococcus xanthus.
    Lee B; Higgs PI; Zusman DR; Cho K
    J Bacteriol; 2005 Jul; 187(14):5029-31. PubMed ID: 15995222
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation.
    McLoon AL; Wuichet K; Häsler M; Keilberg D; Szadkowski D; Søgaard-Andersen L
    J Bacteriol; 2016 Feb; 198(3):510-20. PubMed ID: 26574508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulations governing the multicellular lifestyle of Myxococcus xanthus.
    Mercier R; Mignot T
    Curr Opin Microbiol; 2016 Dec; 34():104-110. PubMed ID: 27648756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel gene from Myxococcus xanthus that facilitates membrane translocation of an extracellular endoglucanase in Escherichia coli?
    Bensmail L; Monnier C; Quillet L; Guespin-Michel JF; Barray S
    Res Microbiol; 2001 Jun; 152(5):487-92. PubMed ID: 11446517
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Motility in Myxococcus xanthus and its role in developmental aggregation.
    Ward MJ; Zusman DR
    Curr Opin Microbiol; 1999 Dec; 2(6):624-9. PubMed ID: 10607622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel lipids in Myxococcus xanthus and their role in chemotaxis.
    Curtis PD; Geyer R; White DC; Shimkets LJ
    Environ Microbiol; 2006 Nov; 8(11):1935-49. PubMed ID: 17014493
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence Live-cell Imaging of the Complete Vegetative Cell Cycle of the Slow-growing Social Bacterium Myxococcus xanthus.
    Schumacher D; Søgaard-Andersen L
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29985348
    [TBL] [Abstract][Full Text] [Related]  

  • 56. LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus.
    Campoy S; Fontes M; Padmanabhan S; Cortés P; Llagostera M; Barbé J
    Mol Microbiol; 2003 Aug; 49(3):769-81. PubMed ID: 12864858
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzymatic characteristics of two adenylate kinases, AdkA and AdkB, from Myxococcus xanthus.
    Kimura Y; Yamamoto H; Kamatani S
    J Biochem; 2019 Apr; 165(4):379-385. PubMed ID: 30535229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation.
    Leng X; Zhu W; Jin J; Mao X
    Microbiology (Reading); 2011 Jul; 157(Pt 7):1886-1896. PubMed ID: 21454366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification and characterization of five cspA homologous genes from Myxococcus xanthus.
    Yamanaka K; Inouye M; Inouye S
    Biochim Biophys Acta; 1999 Oct; 1447(2-3):357-65. PubMed ID: 10542339
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus.
    Shi W; Yang Z; Sun H; Lancero H; Tong L
    FEMS Microbiol Lett; 2000 Nov; 192(2):211-5. PubMed ID: 11064197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.