These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31465344)

  • 1. Observation of diffraction pattern in two-dimensional optically induced atomic lattice.
    Yuan J; Wu C; Wang L; Chen G; Jia S
    Opt Lett; 2019 Sep; 44(17):4123-4126. PubMed ID: 31465344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of discrete diffraction patterns in an optically induced lattice.
    Sheng J; Wang J; Miri MA; Christodoulides DN; Xiao M
    Opt Express; 2015 Jul; 23(15):19777-82. PubMed ID: 26367635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable optical vortex array in a two-dimensional electromagnetically induced atomic lattice.
    Yuan J; Zhang H; Wu C; Wang L; Xiao L; Jia S
    Opt Lett; 2021 Sep; 46(17):4184-4187. PubMed ID: 34469970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of light in a moving photonic lattice via atomic coherence.
    Zhang Z; Shen Y; Ning S; Liang S; Feng Y; Li C; Zhang Y; Xiao M
    Opt Lett; 2021 Sep; 46(17):4096-4099. PubMed ID: 34469948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable photonic crystal with periodic Raman gain in a coherent atomic medium.
    Zhang Z; Feng J; Liu X; Sheng J; Zhang Y; Zhang Y; Xiao M
    Opt Lett; 2018 Feb; 43(4):919-922. PubMed ID: 29444027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integer and fractional electromagnetically induced Talbot effects in a ladder-type coherent atomic system.
    Yuan J; Wu C; Li Y; Wang L; Zhang Y; Xiao L; Jia S
    Opt Express; 2019 Jan; 27(1):92-101. PubMed ID: 30645361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Talbot effect of an electromagnetically induced square photonic lattice assisted by a spatial light modulator.
    Ning S; Lu J; Liang S; Feng Y; Li C; Zhang Z; Zhang Y
    Opt Lett; 2021 Oct; 46(19):5035-5038. PubMed ID: 34598263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz tunable optically induced lattice in the magnetized monolayer graphene.
    Wen F; Zhang S; Hui S; Ma H; Wang S; Ye H; Wang W; Zhu T; Zhang Y; Wang H
    Opt Express; 2022 Jan; 30(2):2852-2862. PubMed ID: 35209417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric pattern evolution of photonic graphene in coherent atomic medium.
    Zhang H; Yuan J; Xiao L; Jia S; Wang L
    Opt Express; 2023 Mar; 31(7):11335-11343. PubMed ID: 37155771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching from "absorption within transparency" to "transparency within transparency" in an electromagnetically induced absorption dominated transition.
    Dahl K; Molella LS; Rinkleff RH; Danzmann K
    Opt Lett; 2008 May; 33(9):983-5. PubMed ID: 18451960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient all-optical modulator based on a periodic dielectric atomic lattice.
    Yuan J; Dong S; Zhang H; Wu C; Wang L; Xiao L; Jia S
    Opt Express; 2021 Jan; 29(2):2712-2719. PubMed ID: 33726462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azimuthal modulation of electromagnetically induced grating using structured light.
    Asadpour SH; Kirova T; Qian J; Hamedi HR; Juzeliƫnas G; Paspalakis E
    Sci Rep; 2021 Oct; 11(1):20721. PubMed ID: 34671063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell.
    Bae IH; Moon HS; Kim MK; Lee L; Kim JB
    Opt Express; 2010 Jan; 18(2):1389-97. PubMed ID: 20173966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetically induced diffraction in sodium vapor.
    Harada K; Tanaka S; Kanbashi T; Mitsunaga M; Motomura K
    Opt Lett; 2005 Aug; 30(15):2004-6. PubMed ID: 16092247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically-Induced Symmetry Switching in a Reconfigurable Kagome Photonic Lattice: From Flatband to Type-III Dirac Cones.
    Yu Q; Liu Z; Guo D; Liang S; Zhang Y; Zhang Z
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetically induced Bragg reflection with a stationary coupling field in a buffer rubidium vapor cell.
    Bae IH; Moon HS; Kim MK; Lee L; Kim JB
    Appl Opt; 2008 Sep; 47(27):4849-55. PubMed ID: 18806841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Step Excitation in Hot Atomic Sodium Vapor.
    Docters B; Wrachtrup J; Gerhardt I
    Sci Rep; 2017 Sep; 7(1):11760. PubMed ID: 28924230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-optical switching and routing based on an electromagnetically induced absorption grating.
    Brown AW; Xiao M
    Opt Lett; 2005 Apr; 30(7):699-701. PubMed ID: 15832910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of coherent optical information storage in an atomic medium using halted light pulses.
    Liu C; Dutton Z; Behroozi CH; Hau LV
    Nature; 2001 Jan; 409(6819):490-3. PubMed ID: 11206540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.