These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 31465421)

  • 1. Deep-brain 2-photon fluorescence microscopy in vivo excited at the 1700  nm window.
    Cheng H; Tong S; Deng X; Liu H; Du Y; He C; Qiu P; Wang K
    Opt Lett; 2019 Sep; 44(17):4432-4435. PubMed ID: 31465421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo deep-brain blood flow speed measurement through third-harmonic generation imaging excited at the 1700-nm window.
    Liu H; Chen X; Deng X; Zhuang Z; Tong S; Xie W; Li J; Qiu P; Wang K
    Biomed Opt Express; 2020 May; 11(5):2738-2744. PubMed ID: 32499956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-phase-modulated femtosecond laser source at 1603 nm and its application to deep-brain 3-photon microscopy in vivo.
    Chen X; Cheng H; Deng X; Tong S; Li J; Qiu P; Wang K
    J Biophotonics; 2021 Mar; 14(3):e202000349. PubMed ID: 33179837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1700 nm window.
    Deng X; Ma X; Zhang W; Qin M; Xie W; Qiu P; Yin J; Wang K
    Anal Chim Acta; 2023 May; 1255():341118. PubMed ID: 37032053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of two-photon properties of indocyanine green in water and human plasma excited at the 1700-nm window.
    Deng X; He C; Cheng H; Li J; Lu Y; Qiu P; Wang K
    J Biophotonics; 2020 Dec; 13(12):e202000299. PubMed ID: 33026179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air-core fiber or photonic-crystal rod, which is more suitable for energetic femtosecond pulse generation and three-photon microscopy at the 1700-nm window?
    Gan M; He C; Liu H; Zhuang Z; Qiu P; Wang K
    J Biophotonics; 2019 Oct; 12(10):e201900069. PubMed ID: 31194292
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Tong S; Zhong J; Chen X; Deng X; Huang J; Zhang Y; Qin M; Li Z; Cheng H; Zhang W; Zheng L; Xie W; Qiu P; Wang K
    ACS Nano; 2023 Feb; 17(4):3686-3695. PubMed ID: 36799427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-energy polarized soliton synthesis and its application to deep-brain 3-photon microscopy in vivo.
    Liu H; Zhuang Z; He J; Tong S; He C; Deng X; Song G; Qiu P; Wang K
    Opt Express; 2019 May; 27(11):15309-15317. PubMed ID: 31163728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing astrocytes in the deep mouse brain in vivo.
    Liu H; Wang J; Zhuang Z; He J; Wen W; Qiu P; Wang K
    J Biophotonics; 2019 Jul; 12(7):e201800420. PubMed ID: 30938095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-photon microscopy of myelin in mouse digital skin excited at the 1700-nm window.
    He C; Deng X; Pan Y; Tong S; Kang J; Li J; Qiu P; Wang K
    J Biophotonics; 2020 Dec; 13(12):e202000321. PubMed ID: 32969170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Deep-Brain Structural and Hemodynamic Multiphoton Microscopy Enabled by Quantum Dots.
    Liu H; Deng X; Tong S; He C; Cheng H; Zhuang Z; Gan M; Li J; Xie W; Qiu P; Wang K
    Nano Lett; 2019 Aug; 19(8):5260-5265. PubMed ID: 31268725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-brain three-photon microscopy excited at 1600 nm with silicone oil immersion.
    Tong S; Liu H; Cheng H; He C; Du Y; Zhuang Z; Qiu P; Wang K
    J Biophotonics; 2019 Jun; 12(6):e201800423. PubMed ID: 30801979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-photon fluorescence imaging of sulforhodamine B-labeled elastic fibers in the mouse skin in vivo.
    He C; Gan M; Deng X; Liu H; Qiu P; Wang K
    J Biophotonics; 2019 Nov; 12(11):e201900185. PubMed ID: 31276315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses.
    Wen W; Wang Y; Liu H; Wang K; Qiu P; Wang K
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28766923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse.
    Wang Y; Chen M; Alifu N; Li S; Qin W; Qin A; Tang BZ; Qian J
    ACS Nano; 2017 Oct; 11(10):10452-10461. PubMed ID: 29016105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of 3-photon excitation and emission spectra and verification of Kasha's rule for selected fluorescent proteins excited at the 1700-nm window.
    Deng X; Zhuang Z; Liu H; Qiu P; Wang K
    Opt Express; 2019 Apr; 27(9):12723-12731. PubMed ID: 31052809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo deep-brain imaging of microglia enabled by three-photon fluorescence microscopy.
    Cheng H; Tong S; Deng X; Li J; Qiu P; Wang K
    Opt Lett; 2020 Sep; 45(18):5271-5274. PubMed ID: 32932509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-skin multiphoton microscopy of lymphatic vessels excited at the 1700-nm window in vivo.
    Wang K; Pan Y; Tong S; Liang H; Qiu P
    Biomed Opt Express; 2021 Oct; 12(10):6474-6484. PubMed ID: 34745750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the penetration depth in mouse brain
    Zhang Y; Zhong J; Cheng H; Huang J; Li Z; Zhang C; Gao Z; Xu Z; Xu G; Qiu P; Wang K
    Nanoscale Adv; 2024 Jan; 6(2):511-515. PubMed ID: 38235073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indocyanine green fluorescence in second near-infrared (NIR-II) window.
    Starosolski Z; Bhavane R; Ghaghada KB; Vasudevan SA; Kaay A; Annapragada A
    PLoS One; 2017; 12(11):e0187563. PubMed ID: 29121078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.