BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31465441)

  • 1. Reshuffling yeast chromosomes with CRISPR/Cas9.
    Fleiss A; O'Donnell S; Fournier T; Lu W; Agier N; Delmas S; Schacherer J; Fischer G
    PLoS Genet; 2019 Aug; 15(8):e1008332. PubMed ID: 31465441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Versatile Protocol to Generate Translocations in Yeast Genomes Using CRISPR/Cas9.
    Agier N; Fleiss A; Delmas S; Fischer G
    Methods Mol Biol; 2021; 2196():181-198. PubMed ID: 32889721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains.
    Pérez-Ortín JE; Querol A; Puig S; Barrio E
    Genome Res; 2002 Oct; 12(10):1533-9. PubMed ID: 12368245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite.
    García-Ríos E; Nuévalos M; Barrio E; Puig S; Guillamón JM
    Environ Microbiol; 2019 May; 21(5):1771-1781. PubMed ID: 30859719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae.
    Rachidi N; Barre P; Blondin B
    Mol Gen Genet; 1999 Jun; 261(4-5):841-50. PubMed ID: 10394922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae.
    Easmin F; Sasano Y; Kimura S; Hassan N; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2020 Feb; 129(2):129-139. PubMed ID: 31585858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 Facilitated Multiple-Chromosome Fusion in Saccharomyces cerevisiae.
    Shao Y; Lu N; Qin Z; Xue X
    ACS Synth Biol; 2018 Nov; 7(11):2706-2708. PubMed ID: 30352154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast.
    Nardi T; Corich V; Giacomini A; Blondin B
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1686-1696. PubMed ID: 20203053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation.
    Wu D; Xie W; Li X; Cai G; Lu J; Xie G
    Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast.
    Tosato V; Waghmare SK; Bruschi CV
    Chromosoma; 2005 May; 114(1):15-27. PubMed ID: 15843952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise genome-wide base editing by the CRISPR Nickase system in yeast.
    Satomura A; Nishioka R; Mori H; Sato K; Kuroda K; Ueda M
    Sci Rep; 2017 May; 7(1):2095. PubMed ID: 28522803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating functional chromosome fusions in yeast with CRISPR-Cas9.
    Shao Y; Lu N; Xue X; Qin Z
    Nat Protoc; 2019 Aug; 14(8):2521-2545. PubMed ID: 31300803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centromere scission drives chromosome shuffling and reproductive isolation.
    Yadav V; Sun S; Coelho MA; Heitman J
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7917-7928. PubMed ID: 32193338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.
    Ryan OW; Poddar S; Cate JH
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology.
    Huck S; Bock J; Girardello J; Gauert M; Pul Ü
    RNA Biol; 2019 Apr; 16(4):397-403. PubMed ID: 29996713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends.
    Haber JE; Leung WY
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13949-54. PubMed ID: 8943041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.