These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31465497)

  • 1. Population size estimation for quality control of ChIP-Seq datasets.
    Kolmykov SK; Kondrakhin YV; Yevshin IS; Sharipov RN; Ryabova AS; Kolpakov FA
    PLoS One; 2019; 14(8):e0221760. PubMed ID: 31465497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments.
    Yevshin I; Sharipov R; Valeev T; Kel A; Kolpakov F
    Nucleic Acids Res; 2017 Jan; 45(D1):D61-D67. PubMed ID: 27924024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RECAP reveals the true statistical significance of ChIP-seq peak calls.
    Chitpin JG; Awdeh A; Perkins TJ
    Bioinformatics; 2019 Oct; 35(19):3592-3598. PubMed ID: 30824903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package.
    Levitsky V; Zemlyanskaya E; Oshchepkov D; Podkolodnaya O; Ignatieva E; Grosse I; Mironova V; Merkulova T
    Nucleic Acids Res; 2019 Dec; 47(21):e139. PubMed ID: 31750523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline.
    Qin Q; Mei S; Wu Q; Sun H; Li L; Taing L; Chen S; Li F; Liu T; Zang C; Xu H; Chen Y; Meyer CA; Zhang Y; Brown M; Long HW; Liu XS
    BMC Bioinformatics; 2016 Oct; 17(1):404. PubMed ID: 27716038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GTRD: a database on gene transcription regulation-2019 update.
    Yevshin I; Sharipov R; Kolmykov S; Kondrakhin Y; Kolpakov F
    Nucleic Acids Res; 2019 Jan; 47(D1):D100-D105. PubMed ID: 30445619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale quality analysis of published ChIP-seq data.
    Marinov GK; Kundaje A; Park PJ; Wold BJ
    G3 (Bethesda); 2014 Feb; 4(2):209-23. PubMed ID: 24347632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of ChIP-exo peak-callers: impact of data quality, read duplication and binding subtypes.
    Sharma V; Majumdar S
    BMC Bioinformatics; 2020 Feb; 21(1):65. PubMed ID: 32085702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AIControl: replacing matched control experiments with machine learning improves ChIP-seq peak identification.
    Hiranuma N; Lundberg SM; Lee SI
    Nucleic Acids Res; 2019 Jun; 47(10):e58. PubMed ID: 30869146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets.
    Zhang S; Liang Y; Wang X; Su Z; Chen Y
    DNA Res; 2019 Jun; 26(3):231-242. PubMed ID: 30957858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying peaks in *-seq data using shape information.
    Strino F; Lappe M
    BMC Bioinformatics; 2016 Jun; 17 Suppl 5(Suppl 5):206. PubMed ID: 27295177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WACS: improving ChIP-seq peak calling by optimally weighting controls.
    Awdeh A; Turcotte M; Perkins TJ
    BMC Bioinformatics; 2021 Feb; 22(1):69. PubMed ID: 33588754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel ChIP-seq simulating program with superior versatility: isChIP.
    Subkhankulova T; Naumenko F; Tolmachov OE; Orlov YL
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33320934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive assessment of differential ChIP-seq tools guides optimal algorithm selection.
    Eder T; Grebien F
    Genome Biol; 2022 May; 23(1):119. PubMed ID: 35606795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates.
    Newell R; Pienaar R; Balderson B; Piper M; Essebier A; Bodén M
    Genomics; 2021 Jul; 113(4):1855-1866. PubMed ID: 33878366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive and robust assessment of ChIP-seq read distribution using a strand-shift profile.
    Nakato R; Shirahige K
    Bioinformatics; 2018 Jul; 34(14):2356-2363. PubMed ID: 29528371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ritornello: high fidelity control-free chromatin immunoprecipitation peak calling.
    Stanton KP; Jin J; Lederman RR; Weissman SM; Kluger Y
    Nucleic Acids Res; 2017 Dec; 45(21):e173. PubMed ID: 28981893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitating Analysis of Publicly Available ChIP-Seq Data for Integrative Studies.
    Diwadkar AR; Kan M; Himes BE
    AMIA Annu Symp Proc; 2019; 2019():371-379. PubMed ID: 32308830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.