These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31465497)
21. Using combined evidence from replicates to evaluate ChIP-seq peaks. Jalili V; Matteucci M; Masseroli M; Morelli MJ Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351 [TBL] [Abstract][Full Text] [Related]
22. Theoretical characterisation of strand cross-correlation in ChIP-seq. Anzawa H; Yamagata H; Kinoshita K BMC Bioinformatics; 2020 Sep; 21(1):417. PubMed ID: 32962634 [TBL] [Abstract][Full Text] [Related]
23. Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks. Nix DA; Courdy SJ; Boucher KM BMC Bioinformatics; 2008 Dec; 9():523. PubMed ID: 19061503 [TBL] [Abstract][Full Text] [Related]
24. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets. Chen L; Wang C; Qin ZS; Wu H Bioinformatics; 2015 Jun; 31(12):1889-96. PubMed ID: 25682068 [TBL] [Abstract][Full Text] [Related]
25. MotifGenie: a Python application for searching transcription factor binding sequences using ChIP-Seq datasets. Oguztuzun C; Yasar P; Yavuz K; Muyan M; Can T Bioinformatics; 2021 Nov; 37(22):4238-4239. PubMed ID: 33999190 [TBL] [Abstract][Full Text] [Related]
26. TFEA.ChIP: a tool kit for transcription factor binding site enrichment analysis capitalizing on ChIP-seq datasets. Puente-Santamaria L; Wasserman WW; Del Peso L Bioinformatics; 2019 Dec; 35(24):5339-5340. PubMed ID: 31347689 [TBL] [Abstract][Full Text] [Related]
27. From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites. Kulakovskiy I; Levitsky V; Oshchepkov D; Bryzgalov L; Vorontsov I; Makeev V J Bioinform Comput Biol; 2013 Feb; 11(1):1340004. PubMed ID: 23427986 [TBL] [Abstract][Full Text] [Related]
28. Effects of sheared chromatin length on ChIP-seq quality and sensitivity. Keller CA; Wixom AQ; Heuston EF; Giardine B; Hsiung CC; Long MR; Miller A; Anderson SM; Cockburn A; Blobel GA; Bodine DM; Hardison RC G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33788948 [TBL] [Abstract][Full Text] [Related]
29. Genome Wide Approaches to Identify Protein-DNA Interactions. Ma T; Ye Z; Wang L Curr Med Chem; 2019; 26(42):7641-7654. PubMed ID: 29848263 [TBL] [Abstract][Full Text] [Related]
31. ChIP-AP: an integrated analysis pipeline for unbiased ChIP-seq analysis. Suryatenggara J; Yong KJ; Tenen DE; Tenen DG; Bassal MA Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34965583 [TBL] [Abstract][Full Text] [Related]
32. CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection. Oh D; Strattan JS; Hur JK; Bento J; Urban AE; Song G; Cherry JM Sci Rep; 2020 May; 10(1):7933. PubMed ID: 32404971 [TBL] [Abstract][Full Text] [Related]
33. C4S DB: Comprehensive Collection and Comparison for ChIP-Seq Database. Anzawa H; Kinoshita K J Mol Biol; 2023 Jul; 435(14):168157. PubMed ID: 37244568 [TBL] [Abstract][Full Text] [Related]
34. A fully Bayesian hidden Ising model for ChIP-seq data analysis. Mo Q Biostatistics; 2012 Jan; 13(1):113-28. PubMed ID: 21914728 [TBL] [Abstract][Full Text] [Related]
35. ReMap 2020: a database of regulatory regions from an integrative analysis of Human and Arabidopsis DNA-binding sequencing experiments. Chèneby J; Ménétrier Z; Mestdagh M; Rosnet T; Douida A; Rhalloussi W; Bergon A; Lopez F; Ballester B Nucleic Acids Res; 2020 Jan; 48(D1):D180-D188. PubMed ID: 31665499 [TBL] [Abstract][Full Text] [Related]
36. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Yu G; Wang LG; He QY Bioinformatics; 2015 Jul; 31(14):2382-3. PubMed ID: 25765347 [TBL] [Abstract][Full Text] [Related]
37. ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data. Wu S; Wang J; Zhao W; Pounds S; Cheng C Theor Biol Med Model; 2010 Jun; 7():18. PubMed ID: 20525272 [TBL] [Abstract][Full Text] [Related]
38. A signal-noise model for significance analysis of ChIP-seq with negative control. Xu H; Handoko L; Wei X; Ye C; Sheng J; Wei CL; Lin F; Sung WK Bioinformatics; 2010 May; 26(9):1199-204. PubMed ID: 20371496 [TBL] [Abstract][Full Text] [Related]
39. Peak Scores Significantly Depend on the Relationships between Contextual Signals in ChIP-Seq Peaks. Vishnevsky OV; Bocharnikov AV; Ignatieva EV Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256085 [TBL] [Abstract][Full Text] [Related]
40. Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction. Gomes AL; Abeel T; Peterson M; Azizi E; Lyubetskaya A; Carvalho L; Galagan J Genome Res; 2014 Oct; 24(10):1686-97. PubMed ID: 25024162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]