These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31465556)

  • 1. A Bile Duct-on-a-Chip With Organ-Level Functions.
    Du Y; Khandekar G; Llewellyn J; Polacheck W; Chen CS; Wells RG
    Hepatology; 2020 Apr; 71(4):1350-1363. PubMed ID: 31465556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bile Duct-on-a-Chip.
    Du Y; Polacheck WJ; Wells RG
    Methods Mol Biol; 2022; 2373():57-68. PubMed ID: 34520006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human vascularized bile duct-on-a chip: a multi-cellular micro-physiological system for studying cholestatic liver disease.
    Du Y; de Jong IEM; Gupta K; Waisbourd-Zinman O; Har-Zahav A; Soroka CJ; Boyer JL; Llewellyn J; Liu C; Naji A; Polacheck WJ; Wells RG
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37820623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17.
    Waisbourd-Zinman O; Koh H; Tsai S; Lavrut PM; Dang C; Zhao X; Pack M; Cave J; Hawes M; Koo KA; Porter JR; Wells RG
    Hepatology; 2016 Sep; 64(3):880-93. PubMed ID: 27081925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury.
    Khandekar G; Llewellyn J; Kriegermeier A; Waisbourd-Zinman O; Johnson N; Du Y; Giwa R; Liu X; Kisseleva T; Russo PA; Theise ND; Wells RG
    J Hepatol; 2020 Jan; 72(1):135-145. PubMed ID: 31562906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanosensor transient receptor potential vanilloid member 4 (TRPV4) regulates mouse cholangiocyte secretion and bile formation.
    Li Q; Kresge C; Boggs K; Scott J; Feranchak A
    Am J Physiol Gastrointest Liver Physiol; 2020 Feb; 318(2):G277-G287. PubMed ID: 31760763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cholangiocyte Glycocalyx Stabilizes the 'Biliary HCO3 Umbrella': An Integrated Line of Defense against Toxic Bile Acids.
    Maillette de Buy Wenniger LJ; Hohenester S; Maroni L; van Vliet SJ; Oude Elferink RP; Beuers U
    Dig Dis; 2015; 33(3):397-407. PubMed ID: 26045275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Physiologic and pathologic experimental models for studying cholangiocytes].
    Lee SO
    Korean J Hepatol; 2008 Jun; 14(2):139-49. PubMed ID: 18617761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periductal bile acid exposure causes cholangiocyte injury and fibrosis.
    Dotan M; Fried S; Har-Zahav A; Shamir R; Wells RG; Waisbourd-Zinman O
    PLoS One; 2022; 17(3):e0265418. PubMed ID: 35294492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes.
    Marinelli RA; Tietz PS; Pham LD; Rueckert L; Agre P; LaRusso NF
    Am J Physiol; 1999 Jan; 276(1):G280-6. PubMed ID: 9887005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bile acid receptors in the biliary tree: TGR5 in physiology and disease.
    Deutschmann K; Reich M; Klindt C; Dröge C; Spomer L; Häussinger D; Keitel V
    Biochim Biophys Acta Mol Basis Dis; 2018 Apr; 1864(4 Pt B):1319-1325. PubMed ID: 28844960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel model of injured liver ductal organoids to investigate cholangiocyte apoptosis with relevance to biliary atresia.
    Chusilp S; Lee C; Li B; Lee D; Yamoto M; Ganji N; Vejchapipat P; Pierro A
    Pediatr Surg Int; 2020 Dec; 36(12):1471-1479. PubMed ID: 33084932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes.
    Hohenester S; Wenniger LM; Paulusma CC; van Vliet SJ; Jefferson DM; Elferink RP; Beuers U
    Hepatology; 2012 Jan; 55(1):173-83. PubMed ID: 21932391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bile Acids and Deregulated Cholangiocyte Autophagy in Primary Biliary Cholangitis.
    Sasaki M; Nakanuma Y
    Dig Dis; 2017; 35(3):210-216. PubMed ID: 28249264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the developmental pathway neurogenin-3/microRNA-7a regulates cholangiocyte proliferation in response to injury.
    Marzioni M; Agostinelli L; Candelaresi C; Saccomanno S; De Minicis S; Maroni L; Mingarelli E; Rychlicki C; Trozzi L; Banales JM; Benedetti A; Baroni GS
    Hepatology; 2014 Oct; 60(4):1324-35. PubMed ID: 24925797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of polarized primary cultures of rat intrahepatic bile duct epithelial cells.
    Vroman B; LaRusso NF
    Lab Invest; 1996 Jan; 74(1):303-13. PubMed ID: 8569194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology.
    Pinto C; Giordano DM; Maroni L; Marzioni M
    Biochim Biophys Acta Mol Basis Dis; 2018 Apr; 1864(4 Pt B):1270-1278. PubMed ID: 28754451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile duct epithelial tight junctions and barrier function.
    Rao RK; Samak G
    Tissue Barriers; 2013 Oct; 1(4):e25718. PubMed ID: 24665411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile acid interactions with cholangiocytes.
    Xia X; Francis H; Glaser S; Alpini G; LeSage G
    World J Gastroenterol; 2006 Jun; 12(22):3553-63. PubMed ID: 16773712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical features of bile duct epithelial cells in normal and experimental liver conditions.
    Onori P; Franchitto A; Alvaro D; Gaudio E
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):371-8. PubMed ID: 11729979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.