BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31466037)

  • 1. Origin and evolution of eukaryotic transcription factors.
    de Mendoza A; Sebé-Pedrós A
    Curr Opin Genet Dev; 2019 Oct; 58-59():25-32. PubMed ID: 31466037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages.
    de Mendoza A; Sebé-Pedrós A; Šestak MS; Matejcic M; Torruella G; Domazet-Loso T; Ruiz-Trillo I
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):E4858-66. PubMed ID: 24277850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin.
    Pérez-Rueda E; Janga SC
    Mol Biol Evol; 2010 Jun; 27(6):1449-59. PubMed ID: 20123795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic repertoires of DNA-binding transcription factors across the tree of life.
    Charoensawan V; Wilson D; Teichmann SA
    Nucleic Acids Res; 2010 Nov; 38(21):7364-77. PubMed ID: 20675356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The eukaryotic ancestor had a complex ubiquitin signaling system of archaeal origin.
    Grau-Bové X; Sebé-Pedrós A; Ruiz-Trillo I
    Mol Biol Evol; 2015 Mar; 32(3):726-39. PubMed ID: 25525215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin repertoire expansion coincides with eukaryotic diversification in the Mesoproterozoic era.
    Kollmar M; Mühlhausen S
    BMC Evol Biol; 2017 Sep; 17(1):211. PubMed ID: 28870165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors.
    Perez-Rueda E; Hernandez-Guerrero R; Martinez-Nuñez MA; Armenta-Medina D; Sanchez I; Ibarra JA
    PLoS One; 2018; 13(4):e0195332. PubMed ID: 29614096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concepts of the last eukaryotic common ancestor.
    O'Malley MA; Leger MM; Wideman JG; Ruiz-Trillo I
    Nat Ecol Evol; 2019 Mar; 3(3):338-344. PubMed ID: 30778187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Archaeal ancestors of eukaryotes: not so elusive any more.
    Koonin EV
    BMC Biol; 2015 Oct; 13():84. PubMed ID: 26437773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution.
    Linkeviciute V; Rackham OJ; Gough J; Oates ME; Fang H
    Biochimie; 2015 Dec; 119():269-77. PubMed ID: 25980317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals.
    Piasecki BP; Burghoorn J; Swoboda P
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):12969-74. PubMed ID: 20615967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the evolution of transcription factor binding preferences in complex eukaryotes.
    Rosanova A; Colliva A; Osella M; Caselle M
    Sci Rep; 2017 Aug; 7(1):7596. PubMed ID: 28790414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution.
    Weirauch MT; Hughes TR
    Subcell Biochem; 2011; 52():25-73. PubMed ID: 21557078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis.
    Klöpper TH; Kienle N; Fasshauer D; Munro S
    BMC Biol; 2012 Aug; 10():71. PubMed ID: 22873208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.
    Lehti-Shiu MD; Panchy N; Wang P; Uygun S; Shiu SH
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):3-20. PubMed ID: 27522016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution.
    Grau-Bové X; Navarrete C; Chiva C; Pribasnig T; Antó M; Torruella G; Galindo LJ; Lang BF; Moreira D; López-Garcia P; Ruiz-Trillo I; Schleper C; Sabidó E; Sebé-Pedrós A
    Nat Ecol Evol; 2022 Jul; 6(7):1007-1023. PubMed ID: 35680998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes.
    Desmond E; Brochier-Armanet C; Forterre P; Gribaldo S
    Res Microbiol; 2011 Jan; 162(1):53-70. PubMed ID: 21034815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence supporting a viral origin of the eukaryotic nucleus.
    Bell PJL
    Virus Res; 2020 Nov; 289():198168. PubMed ID: 32961211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CHD Chromatin Remodeling Protein Diversification Yields Novel Clades and Domains Absent in Classic Model Organisms.
    Trujillo JT; Long J; Aboelnour E; Ogas J; Wisecaver JH
    Genome Biol Evol; 2022 May; 14(5):. PubMed ID: 35524943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.