BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31466069)

  • 1. Mechanosensitive Pathways Involved in Cardiovascular Development and Homeostasis in Zebrafish.
    Li R; Baek KI; Chang CC; Zhou B; Hsiai TK
    J Vasc Res; 2019; 56(6):273-283. PubMed ID: 31466069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish Model for Functional Screening of Flow-Responsive Genes.
    Serbanovic-Canic J; de Luca A; Warboys C; Ferreira PF; Luong LA; Hsiao S; Gauci I; Mahmoud M; Feng S; Souilhol C; Bowden N; Ashton JP; Walczak H; Firmin D; Krams R; Mason JC; Haskard DO; Sherwin S; Ridger V; Chico TJ; Evans PC
    Arterioscler Thromb Vasc Biol; 2017 Jan; 37(1):130-143. PubMed ID: 27834691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamics driven cardiac valve morphogenesis.
    Steed E; Boselli F; Vermot J
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1760-6. PubMed ID: 26608609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Characterization of Endogenous Cardiovascular Extracellular Vesicles in Larval and Adult Zebrafish.
    Scott A; Sueiro Ballesteros L; Bradshaw M; Tsuji C; Power A; Lorriman J; Love J; Paul D; Herman A; Emanueli C; Richardson RJ
    Arterioscler Thromb Vasc Biol; 2021 Sep; 41(9):2454-2468. PubMed ID: 34261327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway.
    Cai C; Sang C; Du J; Jia H; Tu J; Wan Q; Bao B; Xie S; Huang Y; Li A; Li J; Yang K; Wang S; Lu Q
    FASEB J; 2019 Jan; 33(1):696-710. PubMed ID: 30044923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A zebrafish toolbox for biomechanical signaling in cardiovascular development and disease.
    Rödel CJ; Abdelilah-Seyfried S
    Curr Opin Hematol; 2021 May; 28(3):198-207. PubMed ID: 33714969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged-Notch signaling in fin and limb development.
    Tian J; Shao J; Liu C; Hou HY; Chou CW; Shboul M; Li GQ; El-Khateeb M; Samarah OQ; Kou Y; Chen YH; Chen MJ; Lyu Z; Chen WL; Chen YF; Sun YH; Liu YW
    Cell Mol Life Sci; 2019 Jan; 76(1):163-178. PubMed ID: 30327840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic Activities of Vegfr3/Flt4 and Notch1b Fine-tune Mechanosensitive Signaling during Zebrafish Cardiac Valvulogenesis.
    Fontana F; Haack T; Reichenbach M; Knaus P; Puceat M; Abdelilah-Seyfried S
    Cell Rep; 2020 Jul; 32(2):107883. PubMed ID: 32668254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribbon synapses in zebrafish hair cells.
    Nicolson T
    Hear Res; 2015 Dec; 330(Pt B):170-7. PubMed ID: 25916266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming.
    Gálvez-Santisteban M; Chen D; Zhang R; Serrano R; Nguyen C; Zhao L; Nerb L; Masutani EM; Vermot J; Burns CG; Burns CE; Del Álamo JC; Chi NC
    Elife; 2019 Jun; 8():. PubMed ID: 31237233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular mechanical forces drive endocardial cell volume decrease during zebrafish cardiac valve morphogenesis.
    Vignes H; Vagena-Pantoula C; Prakash M; Fukui H; Norden C; Mochizuki N; Jug F; Vermot J
    Dev Cell; 2022 Mar; 57(5):598-609.e5. PubMed ID: 35245444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation.
    Lee J; Fei P; Packard RR; Kang H; Xu H; Baek KI; Jen N; Chen J; Yen H; Kuo CC; Chi NC; Ho CM; Li R; Hsiai TK
    J Clin Invest; 2016 May; 126(5):1679-90. PubMed ID: 27018592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanotransduction in the Cardiovascular System: From Developmental Origins to Homeostasis and Pathology.
    Garoffolo G; Pesce M
    Cells; 2019 Dec; 8(12):. PubMed ID: 31835742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fatty acid chain elongase, Elovl1, is required for kidney and swim bladder development during zebrafish embryogenesis.
    Bhandari S; Lee JN; Kim YI; Nam IK; Kim SJ; Kim SJ; Kwak S; Oh GS; Kim HJ; Yoo HJ; So HS; Choe SK; Park R
    Organogenesis; 2016 Apr; 12(2):78-93. PubMed ID: 27078170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis.
    Donat S; Lourenço M; Paolini A; Otten C; Renz M; Abdelilah-Seyfried S
    Elife; 2018 Feb; 7():. PubMed ID: 29364115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143.
    Miyasaka KY; Kida YS; Banjo T; Ueki Y; Nagayama K; Matsumoto T; Sato M; Ogura T
    Mech Dev; 2011; 128(1-2):18-28. PubMed ID: 20869435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development.
    Heckel E; Boselli F; Roth S; Krudewig A; Belting HG; Charvin G; Vermot J
    Curr Biol; 2015 May; 25(10):1354-61. PubMed ID: 25959969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and temporal variations in hemodynamic forces initiate cardiac trabeculation.
    Lee J; Vedula V; Baek KI; Chen J; Hsu JJ; Ding Y; Chang CC; Kang H; Small A; Fei P; Chuong CM; Li R; Demer L; Packard RRS; Marsden AL; Hsiai TK
    JCI Insight; 2018 Jul; 3(13):. PubMed ID: 29997298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish.
    Cheng CN; Wingert RA
    Dev Biol; 2015 Mar; 399(1):100-116. PubMed ID: 25542995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of cardiac Wnt/β-catenin signalling in desmoplakin-deficient AC8 zebrafish models is rescuable by genetic and pharmacological intervention.
    Giuliodori A; Beffagna G; Marchetto G; Fornetto C; Vanzi F; Toppo S; Facchinello N; Santimaria M; Vettori A; Rizzo S; Della Barbera M; Pilichou K; Argenton F; Thiene G; Tiso N; Basso C
    Cardiovasc Res; 2018 Jul; 114(8):1082-1097. PubMed ID: 29522173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.