BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31466191)

  • 1. Enhanced extracellular electron transfer between Shewanella putrefaciens and carbon felt electrode modified by bio-reduced graphene oxide.
    Zhu W; Yao M; Gao H; Wen H; Zhao X; Zhang J; Bai H
    Sci Total Environ; 2019 Nov; 691():1089-1097. PubMed ID: 31466191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems.
    Sun DZ; Yu YY; Xie RR; Zhang CL; Yang Y; Zhai DD; Yang G; Liu L; Yong YC
    Biosens Bioelectron; 2017 Jan; 87():195-202. PubMed ID: 27566391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell.
    Zhou S; Lin M; Zhuang Z; Liu P; Chen Z
    Chemosphere; 2019 Oct; 232():396-402. PubMed ID: 31158634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenothiazine derivative-accelerated microbial extracellular electron transfer in bioelectrochemical system.
    Liu XW; Sun XF; Chen JJ; Huang YX; Xie JF; Li WW; Sheng GP; Zhang YY; Zhao F; Lu R; Yu HQ
    Sci Rep; 2013; 3():1616. PubMed ID: 23563590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells.
    Yang L; Wang S; Peng S; Jiang H; Zhang Y; Deng W; Tan Y; Ma M; Xie Q
    Chemistry; 2015 Jul; 21(30):10634-8. PubMed ID: 26095648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells.
    Yuan Y; Zhou S; Zhao B; Zhuang L; Wang Y
    Bioresour Technol; 2012 Jul; 116():453-8. PubMed ID: 22534371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biocompatible electrode/exoelectrogens interface augments bidirectional electron transfer and bioelectrochemical reactions.
    Fang Z; Hu J; Xu MY; Li SW; Li C; Zhou X; Wei J
    Bioelectrochemistry; 2024 Aug; 158():108723. PubMed ID: 38733720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode.
    Wang H; Wang G; Ling Y; Qian F; Song Y; Lu X; Chen S; Tong Y; Li Y
    Nanoscale; 2013 Nov; 5(21):10283-90. PubMed ID: 24057049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential.
    Carmona-Martínez AA; Harnisch F; Kuhlicke U; Neu TR; Schröder U
    Bioelectrochemistry; 2013 Oct; 93():23-9. PubMed ID: 22658509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic study of electron transfer process in methyl orange decolorization by shewanella in MFCs with covalent organic frameworks modified anode.
    Chen L; Jiang L; Cheng L; Gao Y; Wang M; Xu L; Zhu Z
    Chemosphere; 2024 Feb; 350():141073. PubMed ID: 38171395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power.
    Feng C; Lv Z; Yang X; Wei C
    Phys Chem Chem Phys; 2014 Jun; 16(22):10464-72. PubMed ID: 24728040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.
    Zhang C; Liang P; Yang X; Jiang Y; Bian Y; Chen C; Zhang X; Huang X
    Biosens Bioelectron; 2016 Jul; 81():32-38. PubMed ID: 26918615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Newly graphene/polypyrrole (rGO/PPy) modified carbon felt as bio-cathode in bio-electrochemical systems (BESs) achieving complete denitrification.
    Yang YJ; Wang S; Kang D; Lu X; Lu ZC; Liu ZC; Yang LM; Cui D
    Environ Res; 2024 Jul; 252(Pt 1):118881. PubMed ID: 38582430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of carbon felt anode with graphene/Fe
    Fu L; Wang H; Huang Q; Song TS; Xie J
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):373-381. PubMed ID: 31659438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst.
    Yang Q; Yang S; Liu G; Zhou B; Yu X; Yin Y; Yang J; Zhao H
    Chemosphere; 2021 Apr; 268():128800. PubMed ID: 33143885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.
    Tang J; Chen S; Yuan Y; Cai X; Zhou S
    Biosens Bioelectron; 2015 Sep; 71():387-395. PubMed ID: 25950933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting current generation in microbial fuel cells by an order of magnitude by coating an ionic liquid polymer on carbon anodes.
    Yang L; Deng W; Zhang Y; Tan Y; Ma M; Xie Q
    Biosens Bioelectron; 2017 May; 91():644-649. PubMed ID: 28110139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells.
    Yong YC; Dong XC; Chan-Park MB; Song H; Chen P
    ACS Nano; 2012 Mar; 6(3):2394-400. PubMed ID: 22360743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.