These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 31466333)
21. Accuracy of genotype imputation in Nelore cattle. Carvalheiro R; Boison SA; Neves HH; Sargolzaei M; Schenkel FS; Utsunomiya YT; O'Brien AM; Sölkner J; McEwan JC; Van Tassell CP; Sonstegard TS; Garcia JF Genet Sel Evol; 2014 Oct; 46(1):69. PubMed ID: 25927950 [TBL] [Abstract][Full Text] [Related]
22. Highly Accurate and Efficient Data-Driven Methods for Genotype Imputation. Choudhury O; Chakrabarty A; Emrich SJ IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1107-1116. PubMed ID: 28574365 [TBL] [Abstract][Full Text] [Related]
23. Accuracy of genotype imputation in sheep breeds. Hayes BJ; Bowman PJ; Daetwyler HD; Kijas JW; van der Werf JH Anim Genet; 2012 Feb; 43(1):72-80. PubMed ID: 22221027 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of the accuracy of imputed sequence variant genotypes and their utility for causal variant detection in cattle. Pausch H; MacLeod IM; Fries R; Emmerling R; Bowman PJ; Daetwyler HD; Goddard ME Genet Sel Evol; 2017 Feb; 49(1):24. PubMed ID: 28222685 [TBL] [Abstract][Full Text] [Related]
25. Accuracy of genotype imputation based on random and selected reference sets in purebred and crossbred sheep populations and its effect on accuracy of genomic prediction. Moghaddar N; Gore KP; Daetwyler HD; Hayes BJ; van der Werf JH Genet Sel Evol; 2015 Dec; 47():97. PubMed ID: 26694131 [TBL] [Abstract][Full Text] [Related]
26. Phenotype Prediction and Genome-Wide Association Study Using Deep Convolutional Neural Network of Soybean. Liu Y; Wang D; He F; Wang J; Joshi T; Xu D Front Genet; 2019; 10():1091. PubMed ID: 31824557 [TBL] [Abstract][Full Text] [Related]
27. Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data. Felipe VP; Okut H; Gianola D; Silva MA; Rosa GJ BMC Genet; 2014 Dec; 15():149. PubMed ID: 25544265 [TBL] [Abstract][Full Text] [Related]
28. Genotype imputation methods for whole and complex genomic regions utilizing deep learning technology. Naito T; Okada Y J Hum Genet; 2024 Oct; 69(10):481-486. PubMed ID: 38225263 [TBL] [Abstract][Full Text] [Related]
29. Design of a low-density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy. Bolormaa S; Gore K; van der Werf JH; Hayes BJ; Daetwyler HD Anim Genet; 2015 Oct; 46(5):544-56. PubMed ID: 26360638 [TBL] [Abstract][Full Text] [Related]
30. Imputation of missing genotypes from low- to high-density SNP panel in different population designs. He S; Wang S; Fu W; Ding X; Zhang Q Anim Genet; 2015 Feb; 46(1):1-7. PubMed ID: 25431355 [TBL] [Abstract][Full Text] [Related]
31. The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa. Aliloo H; Mrode R; Okeyo AM; Ni G; Goddard ME; Gibson JP J Dairy Sci; 2018 Oct; 101(10):9108-9127. PubMed ID: 30077450 [TBL] [Abstract][Full Text] [Related]
32. Assets of imputation to ultra-high density for productive and functional traits. Jiménez-Montero JA; Gianola D; Weigel K; Alenda R; González-Recio O J Dairy Sci; 2013 Sep; 96(9):6047-58. PubMed ID: 23810591 [TBL] [Abstract][Full Text] [Related]
33. Comparison among three variant callers and assessment of the accuracy of imputation from SNP array data to whole-genome sequence level in chicken. Ni G; Strom TM; Pausch H; Reimer C; Preisinger R; Simianer H; Erbe M BMC Genomics; 2015 Oct; 16():824. PubMed ID: 26486989 [TBL] [Abstract][Full Text] [Related]
34. Assessing and comparison of different machine learning methods in parent-offspring trios for genotype imputation. Mikhchi A; Honarvar M; Kashan NE; Aminafshar M J Theor Biol; 2016 Jun; 399():148-58. PubMed ID: 27049046 [TBL] [Abstract][Full Text] [Related]
35. Effect of genome-wide genotyping and reference panels on rare variants imputation. Zheng HF; Ladouceur M; Greenwood CM; Richards JB J Genet Genomics; 2012 Oct; 39(10):545-50. PubMed ID: 23089364 [TBL] [Abstract][Full Text] [Related]
36. Scanning and Filling: Ultra-Dense SNP Genotyping Combining Genotyping-By-Sequencing, SNP Array and Whole-Genome Resequencing Data. Torkamaneh D; Belzile F PLoS One; 2015; 10(7):e0131533. PubMed ID: 26161900 [TBL] [Abstract][Full Text] [Related]
37. Estimation of variance and genomic prediction using genotypes imputed from low-density marker subsets for carcass traits in Japanese black cattle. Ogawa S; Matsuda H; Taniguchi Y; Watanabe T; Sugimoto Y; Iwaisaki H Anim Sci J; 2016 Sep; 87(9):1106-13. PubMed ID: 26685777 [TBL] [Abstract][Full Text] [Related]
38. High-accuracy haplotype imputation using unphased genotype data as the references. Li W; Xu W; Fu G; Ma L; Richards J; Rao W; Bythwood T; Guo S; Song Q Gene; 2015 Nov; 572(2):279-84. PubMed ID: 26232609 [TBL] [Abstract][Full Text] [Related]
40. Non-linear missing data imputation for healthcare data via index-aware autoencoders. Kabir S; Farrokhvar L Health Care Manag Sci; 2022 Sep; 25(3):484-497. PubMed ID: 35737282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]