BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31466351)

  • 1. The Role of Active-Site Residues Phe98, His239, and Arg243 in DNA Binding and in the Catalysis of Human Uracil-DNA Glycosylase SMUG1.
    Iakovlev DA; Alekseeva IV; Vorobjev YN; Kuznetsov NA; Fedorova OS
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31466351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1.
    Iakovlev DA; Alekseeva IV; Kuznetsov NA; Fedorova OS
    Biochemistry (Mosc); 2020 May; 85(5):594-603. PubMed ID: 32571189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase.
    Matsubara M; Tanaka T; Terato H; Ohmae E; Izumi S; Katayanagi K; Ide H
    Nucleic Acids Res; 2004; 32(17):5291-302. PubMed ID: 15466595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1.
    Kuznetsova AA; Iakovlev DA; Misovets IV; Ishchenko AA; Saparbaev MK; Kuznetsov NA; Fedorova OS
    Mol Biosyst; 2017 Nov; 13(12):2638-2649. PubMed ID: 29051947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action mechanism of human SMUG1 uracil-DNA glycosylase.
    Matsubara M; Tanaka T; Terato H; Ide H
    Nucleic Acids Symp Ser (Oxf); 2005; (49):295-6. PubMed ID: 17150750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights from xanthine and uracil DNA glycosylase activities of bacterial and human SMUG1: switching SMUG1 to UDG.
    Mi R; Dong L; Kaulgud T; Hackett KW; Dominy BN; Cao W
    J Mol Biol; 2009 Jan; 385(3):761-78. PubMed ID: 18835277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparative Analysis of the Activity of the Polymorphic Variants of Human Uracil-DNA-Glycosylases SMUG1 and MBD4].
    Alekseeva IV; Bakman AS; Iakovlev DA; Kuznetsov NA; Fedorova OS
    Mol Biol (Mosk); 2021; 55(2):277-288. PubMed ID: 33871441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.
    Masaoka A; Matsubara M; Hasegawa R; Tanaka T; Kurisu S; Terato H; Ohyama Y; Karino N; Matsuda A; Ide H
    Biochemistry; 2003 May; 42(17):5003-12. PubMed ID: 12718543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.
    Pedersen HL; Johnson KA; McVey CE; Leiros I; Moe E
    Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):2137-49. PubMed ID: 26457437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMUG2 DNA glycosylase from
    Pang P; Yang Y; Li J; Wang Z; Cao W; Xie W
    Biochem J; 2017 Mar; 474(6):923-938. PubMed ID: 28049757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite-base dependent excision of 5-formyluracil from DNA by hSMUG1.
    Knaevelsrud I; Slupphaug G; Leiros I; Matsuda A; Ruoff P; Bjelland S
    Int J Radiat Biol; 2009 May; 85(5):413-20. PubMed ID: 19365746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a prototypical single-stranded uracil DNA glycosylase from Listeria innocua.
    Li J; Yang Y; Guevara J; Wang L; Cao W
    DNA Repair (Amst); 2017 Sep; 57():107-115. PubMed ID: 28719838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase.
    Darwanto A; Theruvathu JA; Sowers JL; Rogstad DK; Pascal T; Goddard W; Sowers LC
    J Biol Chem; 2009 Jun; 284(23):15835-46. PubMed ID: 19324873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms.
    Pettersen HS; Sundheim O; Gilljam KM; Slupphaug G; Krokan HE; Kavli B
    Nucleic Acids Res; 2007; 35(12):3879-92. PubMed ID: 17537817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of family 5 uracil-DNA glycosylase bound to DNA.
    Kosaka H; Hoseki J; Nakagawa N; Kuramitsu S; Masui R
    J Mol Biol; 2007 Nov; 373(4):839-50. PubMed ID: 17870091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An unconventional family 1 uracil DNA glycosylase in Nitratifractor salsuginis.
    Li J; Chen R; Yang Y; Zhang Z; Fang GC; Xie W; Cao W
    FEBS J; 2017 Dec; 284(23):4017-4034. PubMed ID: 28977725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of arginine 276 in the leucine-loop of human uracil-DNA glycosylase.
    Chen CY; Mosbaugh DW; Bennett SE
    J Biol Chem; 2004 Nov; 279(46):48177-88. PubMed ID: 15339922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcription factor, NFI/CTF plays a positive regulatory role in expression of the hSMUG1 gene.
    Elateri I; Muller-Weeks S; Caradonna S
    DNA Repair (Amst); 2003 Dec; 2(12):1371-85. PubMed ID: 14642566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural role of uracil DNA glycosylase for the recognition of uracil in DNA duplexes. Clues from atomistic simulations.
    Franco D; Sgrignani J; Bussi G; Magistrato A
    J Chem Inf Model; 2013 Jun; 53(6):1371-87. PubMed ID: 23705837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of family 4 uracil-DNA glycosylase from Sulfolobus tokodaii and a function of tyrosine 170 in DNA binding.
    Kawai A; Higuchi S; Tsunoda M; Nakamura KT; Yamagata Y; Miyamoto S
    FEBS Lett; 2015 Sep; 589(19 Pt B):2675-82. PubMed ID: 26318717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.