These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 3146646)

  • 1. Evolution of the EF-hand calcium-binding protein family: evidence for exon shuffling and intron insertion.
    Perret C; Lomri N; Thomasset M
    J Mol Evol; 1988; 27(4):351-64. PubMed ID: 3146646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of EF-hand calcium-modulated proteins. IV. Exon shuffling did not determine the domain compositions of EF-hand proteins.
    Kretsinger RH; Nakayama S
    J Mol Evol; 1993 May; 36(5):477-88. PubMed ID: 8510180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of EF-hand calcium-modulated proteins. III. Exon sequences confirm most dendrograms based on protein sequences: calmodulin dendrograms show significant lack of parallelism.
    Nakayama S; Kretsinger RH
    J Mol Evol; 1993 May; 36(5):458-76. PubMed ID: 8510179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic structure of Chlamydomonas caltractin. Evidence for intron insertion suggests a probable genealogy for the EF-hand superfamily of proteins.
    Lee VD; Stapleton M; Huang B
    J Mol Biol; 1991 Sep; 221(1):175-91. PubMed ID: 1920403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of the calmodulin gene.
    Nojima H
    FEBS Lett; 1987 Jun; 217(2):187-90. PubMed ID: 3595850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unique exon-intron organization of a porcine S100C gene: close evolutionary relationship to calmodulin genes.
    Nakamura T; Hayashi M; Kato A; Sawazaki T; Yasue H; Nakano T; Tanaka T
    Biochem Biophys Res Commun; 1998 Feb; 243(3):647-52. PubMed ID: 9500989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intron phase correlations and the evolution of the intron/exon structure of genes.
    Long M; Rosenberg C; Gilbert W
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12495-9. PubMed ID: 8618928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and promoter activity of the LpS1 genes of Lytechinus pictus. Duplicated exons account for LpS1 proteins with eight calcium binding domains.
    Xiang MQ; Ge T; Tomlinson CR; Klein WH
    J Biol Chem; 1991 Jun; 266(16):10524-33. PubMed ID: 2037596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intron-dependent evolution: preferred types of exons and introns.
    Patthy L
    FEBS Lett; 1987 Apr; 214(1):1-7. PubMed ID: 3552723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single copy gene for chicken chromosomal protein HMG-14b has evolutionarily conserved features, has lost one of its introns and codes for a rapidly evolving protein.
    Srikantha T; Landsman D; Bustin M
    J Mol Biol; 1990 Jan; 211(1):49-61. PubMed ID: 2153836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the intron-exon structure of eukaryotic genes.
    Long M; de Souza SJ; Gilbert W
    Curr Opin Genet Dev; 1995 Dec; 5(6):774-8. PubMed ID: 8745076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral exon/intron organization of the eumetazoan CaM gene.
    Chiou CY; Chen IP; Chen C; Wu HJ; Wei NV; Wallace CC; Chen CA
    J Mol Evol; 2008 Apr; 66(4):317-24. PubMed ID: 18322634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The complete intron/exon structure of Ephydatia mülleri fibrillar collagen gene suggests a mechanism for the evolution of an ancestral gene module.
    Exposito JY; van der Rest M; Garrone R
    J Mol Evol; 1993 Sep; 37(3):254-9. PubMed ID: 8230249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic insertion-deletion of introns in deuterostome EF-1alpha genes.
    Wada H; Kobayashi M; Sato R; Satoh N; Miyasaka H; Shirayama Y
    J Mol Evol; 2002 Jan; 54(1):118-28. PubMed ID: 11734905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the gene encoding mouse reticulocalbin, a novel endoplasmic reticulum-resident Ca(2+)-binding protein with multiple EF-hand motifs.
    Ozawa M
    J Biochem; 1995 Jul; 118(1):154-60. PubMed ID: 8537305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence of the gene for the b subunit of human factor XIII.
    Bottenus RE; Ichinose A; Davie EW
    Biochemistry; 1990 Dec; 29(51):11195-209. PubMed ID: 2271707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing the "proto-splice sites" model of intron origin: evidence from analysis of intron phase correlations.
    Long M; Rosenberg C
    Mol Biol Evol; 2000 Dec; 17(12):1789-96. PubMed ID: 11110894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the genes of two homologous intracellularly heterotopic isoenzymes. Cytosolic and mitochondrial aspartate aminotransferase of chicken.
    Juretić N; Mattes U; Ziak M; Christen P; Jaussi R
    Eur J Biochem; 1990 Aug; 192(1):119-26. PubMed ID: 2401287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intron-loss evolution of hatching enzyme genes in Teleostei.
    Kawaguchi M; Hiroi J; Miya M; Nishida M; Iuchi I; Yasumasu S
    BMC Evol Biol; 2010 Aug; 10():260. PubMed ID: 20796321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.