BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31466820)

  • 1. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains.
    Pernicova I; Kucera D; Nebesarova J; Kalina M; Novackova I; Koller M; Obruca S
    Bioresour Technol; 2019 Nov; 292():122028. PubMed ID: 31466820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats.
    Rathi DN; Amir HG; Abed RM; Kosugi A; Arai T; Sulaiman O; Hashim R; Sudesh K
    J Appl Microbiol; 2013 Feb; 114(2):384-95. PubMed ID: 23176757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of
    Kökpınar Ö; Altun M
    Prep Biochem Biotechnol; 2023; 53(5):532-541. PubMed ID: 36007876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.
    Benesova P; Kucera D; Marova I; Obruca S
    Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila.
    Kucera D; Pernicová I; Kovalcik A; Koller M; Mullerova L; Sedlacek P; Mravec F; Nebesarova J; Kalina M; Marova I; Krzyzanek V; Obruca S
    Bioresour Technol; 2018 May; 256():552-556. PubMed ID: 29478784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering NADH/NAD
    Ling C; Qiao GQ; Shuai BW; Olavarria K; Yin J; Xiang RJ; Song KN; Shen YH; Guo Y; Chen GQ
    Metab Eng; 2018 Sep; 49():275-286. PubMed ID: 30219528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Thirty years of metabolic engineering for biosynthesis of polyhydroxyalkanoates].
    Chen X; Li M; Chen GQ
    Sheng Wu Gong Cheng Xue Bao; 2021 May; 37(5):1794-1811. PubMed ID: 34085455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Halomonas TD01 as a host for open production of chemicals.
    Fu XZ; Tan D; Aibaidula G; Wu Q; Chen JC; Chen GQ
    Metab Eng; 2014 May; 23():78-91. PubMed ID: 24566041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHA Production and PHA Synthases of the Halophilic Bacterium
    Thomas T; Sudesh K; Bazire A; Elain A; Tan HT; Lim H; Bruzaud S
    Bioengineering (Basel); 2020 Mar; 7(1):. PubMed ID: 32244900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects.
    Quillaguamán J; Guzmán H; Van-Thuoc D; Hatti-Kaul R
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1687-96. PubMed ID: 20024541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships.
    Cai L; Tan D; Aibaidula G; Dong XR; Chen JC; Tian WD; Chen GQ
    Microb Cell Fact; 2011 Nov; 10():88. PubMed ID: 22040376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential.
    Thomas T; Elain A; Bazire A; Bruzaud S
    World J Microbiol Biotechnol; 2019 Mar; 35(3):50. PubMed ID: 30852675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polyhydroxyalkanoates production from wheat straw by recombinant Halomonas elongata A1.
    Liu C; Wang X; Yang H; Liu C; Zhang Z; Chen G
    Int J Biol Macromol; 2021 Sep; 187():675-682. PubMed ID: 34314798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV).
    Chen Y; Chen XY; Du HT; Zhang X; Ma YM; Chen JC; Ye JW; Jiang XR; Chen GQ
    Metab Eng; 2019 Jul; 54():69-82. PubMed ID: 30914380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremophilic Bacterium
    Hammami K; Souissi Y; Souii A; Ouertani A; El-Hidri D; Jabberi M; Chouchane H; Mosbah A; Masmoudi AS; Cherif A; Neifar M
    Front Bioeng Biotechnol; 2022; 10():878843. PubMed ID: 35677302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid.
    Cha D; Ha HS; Lee SK
    Bioresour Technol; 2020 Aug; 309():123332. PubMed ID: 32305015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons.
    Tufail S; Munir S; Jamil N
    Braz J Microbiol; 2017; 48(4):629-636. PubMed ID: 28629970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of mesophilic Burkholderia sacchari, thermophilic Schlegelella thermodepolymerans and halophilic Halomonas halophila for polyhydroxyalkanoates production on model media mimicking lignocellulose hydrolysates.
    Kourilova X; Novackova I; Koller M; Obruca S
    Bioresour Technol; 2021 Apr; 325():124704. PubMed ID: 33493750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of diverse α,ω-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis.
    Yan X; Liu X; Yu LP; Wu F; Jiang XR; Chen GQ
    Metab Eng; 2022 Jul; 72():275-288. PubMed ID: 35429676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacterium glutamicum using propionate as a precursor.
    Matsumoto K; Kitagawa K; Jo SJ; Song Y; Taguchi S
    J Biotechnol; 2011 Apr; 152(4):144-6. PubMed ID: 20692303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.