These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31467147)

  • 1. Evidence that the
    Malkowski SN; Spencer TCJ; Breaker RR
    RNA; 2019 Dec; 25(12):1616-1627. PubMed ID: 31467147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A second riboswitch class for the enzyme cofactor NAD
    Panchapakesan SSS; Corey L; Malkowski SN; Higgs G; Breaker RR
    RNA; 2021 Jan; 27(1):99-105. PubMed ID: 33087526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding.
    Chen H; Egger M; Xu X; Flemmich L; Krasheninina O; Sun A; Micura R; Ren A
    Nucleic Acids Res; 2020 Dec; 48(21):12394-12406. PubMed ID: 33170270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and ligand binding of the ADP-binding domain of the NAD
    Huang L; Wang J; Lilley DMJ
    RNA; 2020 Jul; 26(7):878-887. PubMed ID: 32295864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based investigations of the NAD+-II riboswitch.
    Xu X; Egger M; Li C; Chen H; Micura R; Ren A
    Nucleic Acids Res; 2023 Jan; 51(1):54-67. PubMed ID: 36610789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-Length NAD
    Srivastava Y; Blau ME; Jenkins JL; Wedekind JE
    Biochemistry; 2023 Dec; 62(23):3396-3410. PubMed ID: 37947391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rare bacterial RNA motif is implicated in the regulation of the
    Malkowski SN; Atilho RM; Greenlee EB; Weinberg CE; Breaker RR
    RNA; 2020 Dec; 26(12):1838-1846. PubMed ID: 32843366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class.
    Nelson JW; Atilho RM; Sherlock ME; Stockbridge RB; Breaker RR
    Mol Cell; 2017 Jan; 65(2):220-230. PubMed ID: 27989440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of the NAD+-II riboswitch reveal two distinct ligand-binding pockets.
    Peng X; Liao W; Lin X; Lilley DMJ; Huang L
    Nucleic Acids Res; 2023 Apr; 51(6):2904-2914. PubMed ID: 36840714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The adenine riboswitch: a new gene regulation mechanism].
    Lemay JF; Lafontaine DA
    Med Sci (Paris); 2006 Dec; 22(12):1053-9. PubMed ID: 17156726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes.
    Sherlock ME; Breaker RR
    RNA; 2020 Jun; 26(6):675-693. PubMed ID: 32165489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges of ligand identification for the second wave of orphan riboswitch candidates.
    Greenlee EB; Stav S; Atilho RM; Brewer KI; Harris KA; Malkowski SN; Mirihana Arachchilage G; Perkins KR; Sherlock ME; Breaker RR
    RNA Biol; 2018 Mar; 15(3):377-390. PubMed ID: 29135333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bacterial riboswitch class senses xanthine and uric acid to regulate genes associated with purine oxidation.
    Yu D; Breaker RR
    RNA; 2020 Aug; 26(8):960-968. PubMed ID: 32345632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.
    Mirihana Arachchilage G; Sherlock ME; Weinberg Z; Breaker RR
    RNA Biol; 2018 Mar; 15(3):371-378. PubMed ID: 29106323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riboswitch diversity and distribution.
    McCown PJ; Corbino KA; Stav S; Sherlock ME; Breaker RR
    RNA; 2017 Jul; 23(7):995-1011. PubMed ID: 28396576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical validation of a second class of tetrahydrofolate riboswitches in bacteria.
    Chen X; Mirihana Arachchilage G; Breaker RR
    RNA; 2019 Sep; 25(9):1091-1097. PubMed ID: 31186369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control.
    Rieder R; Lang K; Graber D; Micura R
    Chembiochem; 2007 May; 8(8):896-902. PubMed ID: 17440909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Malkowski SN; Breaker RR
    Biochemistry; 2017 Jan; 56(2):352-358. PubMed ID: 28001368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.