These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31467169)

  • 1. Engineering energetically efficient transport of dicarboxylic acids in yeast
    Darbani B; Stovicek V; van der Hoek SA; Borodina I
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19415-19420. PubMed ID: 31467169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and engineering a C
    Cao W; Yan L; Li M; Liu X; Xu Y; Xie Z; Liu H
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9773-9783. PubMed ID: 32997202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids.
    Grobler J; Bauer F; Subden RE; Van Vuuren HJ
    Yeast; 1995 Dec; 11(15):1485-91. PubMed ID: 8750236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae.
    Camarasa C; Bidard F; Bony M; Barre P; Dequin S
    Appl Environ Microbiol; 2001 Sep; 67(9):4144-51. PubMed ID: 11526017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of a C
    Yang L; Christakou E; Vang J; Lübeck M; Lübeck PS
    Microb Cell Fact; 2017 Mar; 16(1):43. PubMed ID: 28288640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxic thio-malate is transported by both an aluminum-responsive malate efflux pathway in wheat and the MAE1 malate permease in Schizosaccharomyces pombe.
    Osawa H; Matsumoto H
    Planta; 2006 Jul; 224(2):462-71. PubMed ID: 16450171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering pathways for malate degradation in Saccharomyces cerevisiae.
    Volschenk H; Viljoen M; Grobler J; Petzold B; Bauer F; Subden RE; Young RA; Lonvaud A; Denayrolles M; van Vuuren HJ
    Nat Biotechnol; 1997 Mar; 15(3):253-7. PubMed ID: 9062925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.
    Zelle RM; de Hulster E; van Winden WA; de Waard P; Dijkema C; Winkler AA; Geertman JM; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2008 May; 74(9):2766-77. PubMed ID: 18344340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.
    Rhie MN; Yoon HE; Oh HY; Zedler S; Unden G; Kim OB
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1533-1544. PubMed ID: 24742960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.
    Shah MV; van Mastrigt O; Heijnen JJ; van Gulik WM
    Yeast; 2016 Apr; 33(4):145-61. PubMed ID: 26683700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.
    Volschenk H; Viljoen-Bloom M; Subden RE; van Vuuren HJ
    Yeast; 2001 Jul; 18(10):963-70. PubMed ID: 11447602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel dicarboxylate selectivity in an insect glutamate transporter homolog.
    Wang H; Rascoe AM; Holley DC; Gouaux E; Kavanaugh MP
    PLoS One; 2013; 8(8):e70947. PubMed ID: 23951049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic amino acids involved in dicarboxylate binding of the flounder renal organic anion transporter.
    Wolff NA; Grünwald B; Friedrich B; Lang F; Godehardt S; Burckhardt G
    J Am Soc Nephrol; 2001 Oct; 12(10):2012-2018. PubMed ID: 11562399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing recombinant Saccharomyces cerevisiae strains for malic-to-fumaric acid conversion.
    Steyn A; Viljoen-Bloom M; Van Zyl WH
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36646426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.
    Chen X; Wang Y; Dong X; Hu G; Liu L
    Appl Microbiol Biotechnol; 2017 May; 101(10):4041-4052. PubMed ID: 28229207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.
    Liu J; Li J; Shin HD; Du G; Chen J; Liu L
    J Biotechnol; 2017 Nov; 262():40-46. PubMed ID: 28965975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malo-ethanolic fermentation in Saccharomyces and Schizosaccharomyces.
    Volschenk H; van Vuuren HJ; Viljoen-Bloom M
    Curr Genet; 2003 Sep; 43(6):379-91. PubMed ID: 12802505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential uptake of fumarate by Candida utilis and Schizosaccharomyces pombe.
    Saayman M; van Vuuren HJ; van Zyl WH; Viljoen-Bloom M
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):792-8. PubMed ID: 11152071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae.
    Pereira R; Wei Y; Mohamed E; Radi M; Malina C; Herrgård MJ; Feist AM; Nielsen J; Chen Y
    Metab Eng; 2019 Dec; 56():130-141. PubMed ID: 31550508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting key residues of a C4-dicarboxylic acid transporter to accelerate malate export in Myceliophthora.
    Wu T; Wang Y; Li J; Tian C
    Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):609-622. PubMed ID: 36542100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.