These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 31467170)
1. Reply to Krishna et al.: Resolving age-related changes in nitrogen fixation and mineral weathering by Perakis SS; Pett-Ridge JC Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19789-19790. PubMed ID: 31467170 [No Abstract] [Full Text] [Related]
2. Nitrogen-fixing red alder trees tap rock-derived nutrients. Perakis SS; Pett-Ridge JC Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5009-5014. PubMed ID: 30804181 [TBL] [Abstract][Full Text] [Related]
3. Reply to Lambers et al.: How does nitrogen-fixing red alder eat rocks? Perakis SS; Pett-Ridge JC Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11577-11578. PubMed ID: 31164426 [No Abstract] [Full Text] [Related]
4. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129 [TBL] [Abstract][Full Text] [Related]
5. Effect of alder on soil bacteria offers an alternative explanation to the role played by alder in rock weathering. Krishna M; Singh SK; Tripathi JK; Chaturvedi R; Garkoti SC Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19786-19788. PubMed ID: 31467171 [No Abstract] [Full Text] [Related]
6. Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment. Pietrzykowski M; Woś B; Pająk M; Wanic T; Krzaklewski W; Chodak M Environ Sci Pollut Res Int; 2018 Jun; 25(17):17091-17099. PubMed ID: 29644608 [TBL] [Abstract][Full Text] [Related]
7. [Effects of N-fixing tree species (Alnus sibirica)on amino sugars in soil aggregates of Larix kaempferi plantation in eastern Liaoning Province, China.]. Jing YL; Liu SR; Yin Y; Yao RS; Zhang SQ; Mao RX Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1753-1758. PubMed ID: 29974682 [TBL] [Abstract][Full Text] [Related]
8. Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Uroz S; Oger P; Lepleux C; Collignon C; Frey-Klett P; Turpault MP Res Microbiol; 2011 Nov; 162(9):820-31. PubMed ID: 21315149 [TBL] [Abstract][Full Text] [Related]
9. Development of molecular markers for screening of Alnus nepalensis (D. Don) genotypes for the nitrogenase activity of actinorhizal root nodules. Chauhan VS; Misra AK Mol Genet Genomics; 2002 May; 267(3):303-12. PubMed ID: 12073032 [TBL] [Abstract][Full Text] [Related]
10. Benefit to N2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption. Tateno M Oecologia; 2003 Nov; 137(3):338-43. PubMed ID: 12905061 [TBL] [Abstract][Full Text] [Related]
11. Do cluster roots of red alder play a role in nutrient acquisition from bedrock? Lambers H; Nascimento DL; Oliveira RS; Shi J Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11575-11576. PubMed ID: 31164427 [No Abstract] [Full Text] [Related]
12. Performance of an age series of alnus-cardamom plantations in the Sikkim Himalaya: productivity, energetics and efficiencies. Sharma G; Sharma E; Sharma R; Singh KK Ann Bot; 2002 Mar; 89(3):261-72. PubMed ID: 12096738 [TBL] [Abstract][Full Text] [Related]
13. Schwob G; Roy M; Pozzi AC; Herrera-Belaroussi A; Fernandez MP Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217853 [TBL] [Abstract][Full Text] [Related]
14. Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities. Colin Y; Nicolitch O; Turpault MP; Uroz S Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003192 [TBL] [Abstract][Full Text] [Related]
15. Soluble soil aluminum alters the relative uptake of mineral nitrogen forms by six mature temperate broadleaf tree species: possible implications for watershed nitrate retention. Burnham MB; Cumming JR; Adams MB; Peterjohn WT Oecologia; 2017 Nov; 185(3):327-337. PubMed ID: 28913653 [TBL] [Abstract][Full Text] [Related]
16. [Electron microscopic study of the developmental cycle of an actinomycete endosymbiont in the nitrogen-fixing nodules on the roots of Alnus glutinosa]. Suetin SO; Pariĭskaia AN; Kalakutskiĭ LV Mikrobiologiia; 1980; 49(4):604-7. PubMed ID: 7412621 [TBL] [Abstract][Full Text] [Related]
17. Taxonomic identity determines N2 fixation by canopy trees across lowland tropical forests. Wurzburger N; Hedin LO Ecol Lett; 2016 Jan; 19(1):62-70. PubMed ID: 26584690 [TBL] [Abstract][Full Text] [Related]
18. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Batterman SA; Hall JS; Turner BL; Hedin LO; LaHaela Walter JK; Sheldon P; van Breugel M Ecol Lett; 2018 Oct; 21(10):1486-1495. PubMed ID: 30073753 [TBL] [Abstract][Full Text] [Related]
19. Correlations between the ages of Alnus host species and the genetic diversity of associated endosymbiotic Frankia strains from nodules. Dai Y; Zhang C; Xiong Z; Zhang Z Sci China C Life Sci; 2005 May; 48 Suppl 1():76-81. PubMed ID: 16089332 [TBL] [Abstract][Full Text] [Related]
20. Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees. Lepais O; Bacles CF Mol Ecol; 2014 Oct; 23(19):4671-3. PubMed ID: 25263401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]