These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 31467171)
1. Effect of alder on soil bacteria offers an alternative explanation to the role played by alder in rock weathering. Krishna M; Singh SK; Tripathi JK; Chaturvedi R; Garkoti SC Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19786-19788. PubMed ID: 31467171 [No Abstract] [Full Text] [Related]
2. Nitrogen-fixing red alder trees tap rock-derived nutrients. Perakis SS; Pett-Ridge JC Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5009-5014. PubMed ID: 30804181 [TBL] [Abstract][Full Text] [Related]
3. Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment. Pietrzykowski M; Woś B; Pająk M; Wanic T; Krzaklewski W; Chodak M Environ Sci Pollut Res Int; 2018 Jun; 25(17):17091-17099. PubMed ID: 29644608 [TBL] [Abstract][Full Text] [Related]
4. Reply to Krishna et al.: Resolving age-related changes in nitrogen fixation and mineral weathering by Perakis SS; Pett-Ridge JC Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19789-19790. PubMed ID: 31467170 [No Abstract] [Full Text] [Related]
5. Green alder (Alnus viridis) encroachment shapes microbial communities in subalpine soils and impacts its bacterial or fungal symbionts differently. Schwob G; Roy M; Manzi S; Pommier T; Fernandez MP Environ Microbiol; 2017 Aug; 19(8):3235-3250. PubMed ID: 28618146 [TBL] [Abstract][Full Text] [Related]
6. Reply to Lambers et al.: How does nitrogen-fixing red alder eat rocks? Perakis SS; Pett-Ridge JC Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11577-11578. PubMed ID: 31164426 [No Abstract] [Full Text] [Related]
7. [Effects of N-fixing tree species (Alnus sibirica)on amino sugars in soil aggregates of Larix kaempferi plantation in eastern Liaoning Province, China.]. Jing YL; Liu SR; Yin Y; Yao RS; Zhang SQ; Mao RX Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1753-1758. PubMed ID: 29974682 [TBL] [Abstract][Full Text] [Related]
8. Do cluster roots of red alder play a role in nutrient acquisition from bedrock? Lambers H; Nascimento DL; Oliveira RS; Shi J Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11575-11576. PubMed ID: 31164427 [No Abstract] [Full Text] [Related]
9. Ectomycorrhizal root development in wet Alder carr forests in response to desiccation and eutrophication. Baar J; Bastiaans T; van de Coevering MA; Roelofs JG Mycorrhiza; 2002 Jun; 12(3):147-51. PubMed ID: 12072985 [TBL] [Abstract][Full Text] [Related]
10. Spatial assessment of the alder tree in Kushiro Mire, Japan using remotely sensed imagery--effects of the surrounding land use on Kushiro Mire. Oki K; Awadu T; Oguma H; Omasa K Environ Monit Assess; 2005 Oct; 109(1-3):243-53. PubMed ID: 16240201 [TBL] [Abstract][Full Text] [Related]
11. Schwob G; Roy M; Pozzi AC; Herrera-Belaroussi A; Fernandez MP Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217853 [TBL] [Abstract][Full Text] [Related]
12. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129 [TBL] [Abstract][Full Text] [Related]
13. Abundance of Alnus incana ssp. rugosa in Adirondack Mountain shrub wetlands and its influence on inorganic nitrogen. Kiernan BD; Hurd TM; Raynal DJ Environ Pollut; 2003; 123(3):347-54. PubMed ID: 12667762 [TBL] [Abstract][Full Text] [Related]
14. Autumnal changes of sulfur fractions and the ratio of organic sulfur to total nitrogen in leaves and adjacent bark of eastern cottonwood, white basswood and actinorhizal black alder. Côté B; Dawson JO; David MB Tree Physiol; 1988 Jun; 4(2):119-28. PubMed ID: 14972822 [TBL] [Abstract][Full Text] [Related]
15. Abundance and Relative Distribution of Frankia Host Infection Groups Under Actinorhizal Alnus glutinosa and Non-actinorhizal Betula nigra Trees. Samant S; Huo T; Dawson JO; Hahn D Microb Ecol; 2016 Feb; 71(2):473-81. PubMed ID: 26143359 [TBL] [Abstract][Full Text] [Related]
16. [Effects of the decomposition of poplar and alder mixed leaf litters on soil microbial biomass]. Chen Q; Fang SZ; Tian Y Ying Yong Sheng Tai Xue Bao; 2012 Aug; 23(8):2121-8. PubMed ID: 23189688 [TBL] [Abstract][Full Text] [Related]
17. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Becerra A; Zak MR; Horton TR; Micolini J Mycorrhiza; 2005 Nov; 15(7):525-31. PubMed ID: 16034621 [TBL] [Abstract][Full Text] [Related]
18. Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils. Ridgway KP; Marland LA; Harrison AF; Wright J; Young JP; Fitter AH FEMS Microbiol Ecol; 2004 Nov; 50(3):255-63. PubMed ID: 19712365 [TBL] [Abstract][Full Text] [Related]
19. Location-Related Differences in Weathering Behaviors and Populations of Culturable Rock-Weathering Bacteria Along a Hillside of a Rock Mountain. Wang Q; Wang R; He L; Sheng X Microb Ecol; 2017 May; 73(4):838-849. PubMed ID: 28004158 [TBL] [Abstract][Full Text] [Related]
20. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling. Thorley RM; Taylor LL; Banwart SA; Leake JR; Beerling DJ Plant Cell Environ; 2015 Sep; 38(9):1947-61. PubMed ID: 25211602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]