These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31467246)
1. A polyamine-independent role for Li B; Kurihara S; Kim SH; Liang J; Michael AJ Biochem J; 2019 Sep; 476(18):2579-2594. PubMed ID: 31467246 [TBL] [Abstract][Full Text] [Related]
2. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia. Li B; Kim SH; Zhang Y; Hanfrey CC; Elliott KA; Ealick SE; Michael AJ Mol Microbiol; 2015 Sep; 97(5):791-807. PubMed ID: 25994085 [TBL] [Abstract][Full Text] [Related]
3. Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation. Green R; Hanfrey CC; Elliott KA; McCloskey DE; Wang X; Kanugula S; Pegg AE; Michael AJ Mol Microbiol; 2011 Aug; 81(4):1109-24. PubMed ID: 21762220 [TBL] [Abstract][Full Text] [Related]
4. Neofunctionalization of S-adenosylmethionine decarboxylase into pyruvoyl-dependent L-ornithine and L-arginine decarboxylases is widespread in bacteria and archaea. Li B; Liang J; Phillips MA; Michael AJ J Biol Chem; 2023 Aug; 299(8):105005. PubMed ID: 37399976 [TBL] [Abstract][Full Text] [Related]
5. RNA interference-mediated silencing of ornithine decarboxylase and spermidine synthase genes in Trypanosoma brucei provides insight into regulation of polyamine biosynthesis. Xiao Y; McCloskey DE; Phillips MA Eukaryot Cell; 2009 May; 8(5):747-55. PubMed ID: 19304951 [TBL] [Abstract][Full Text] [Related]
6. Polyamine-mediated regulation of S-adenosylmethionine decarboxylase expression in mammalian cells. Studies using 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine, a suicide inhibitor of the enzyme. Stjernborg L; Heby O; Mamont P; Persson L Eur J Biochem; 1993 Jun; 214(3):671-6. PubMed ID: 8319678 [TBL] [Abstract][Full Text] [Related]
7. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae. Tabor CW; Tabor H; Tyagi AK; Cohn MS Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461 [TBL] [Abstract][Full Text] [Related]
9. Effects of S-adenosyl-1,8-diamino-3-thio-octane and S-methyl-5'-methylthioadenosine on polyamine synthesis in Ehrlich ascites-tumour cells. Holm I; Persson L; Pegg AE; Heby O Biochem J; 1989 Jul; 261(1):205-10. PubMed ID: 2775206 [TBL] [Abstract][Full Text] [Related]
10. Down-regulation of hypusine biosynthesis in Plasmodium by inhibition of S-adenosyl-methionine-decarboxylase. Blavid R; Kusch P; Hauber J; Eschweiler U; Sarite SR; Specht S; Deininger S; Hoerauf A; Kaiser A Amino Acids; 2010 Feb; 38(2):461-9. PubMed ID: 19949824 [TBL] [Abstract][Full Text] [Related]
11. Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzyme. Persson K; Aslund L; Grahn B; Hanke J; Heby O Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):527-37. PubMed ID: 9677309 [TBL] [Abstract][Full Text] [Related]
12. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. Hanfrey CC; Pearson BM; Hazeldine S; Lee J; Gaskin DJ; Woster PM; Phillips MA; Michael AJ J Biol Chem; 2011 Dec; 286(50):43301-12. PubMed ID: 22025614 [TBL] [Abstract][Full Text] [Related]
13. Translational regulation of ornithine decarboxylase and other enzymes of the polyamine pathway. Shantz LM; Pegg AE Int J Biochem Cell Biol; 1999 Jan; 31(1):107-22. PubMed ID: 10216947 [TBL] [Abstract][Full Text] [Related]
14. Polyamine metabolism in Saccharomyces cerevisiae exposed to ethanol. Walters D; Cowley T Microbiol Res; 1998 Aug; 153(2):179-84. PubMed ID: 9760751 [TBL] [Abstract][Full Text] [Related]
15. S-adenosylmethionine decarboxylase from Leishmania donovani. Molecular, genetic, and biochemical characterization of null mutants and overproducers. Roberts SC; Scott J; Gasteier JE; Jiang Y; Brooks B; Jardim A; Carter NS; Heby O; Ullman B J Biol Chem; 2002 Feb; 277(8):5902-9. PubMed ID: 11734561 [TBL] [Abstract][Full Text] [Related]
16. Stable amplification of the S-adenosylmethionine decarboxylase gene in Chinese hamster ovary cells. Kramer D; Mett H; Evans A; Regenass U; Diegelman P; Porter CW J Biol Chem; 1995 Feb; 270(5):2124-32. PubMed ID: 7836441 [TBL] [Abstract][Full Text] [Related]
17. The activator-binding site of Onchocerca volvulus S-adenosylmethionine decarboxylase, a potential drug target. Ndjonka D; Zou Y; Bi X; Woster P; Walter RD; Lüersen K Biol Chem; 2003 Aug; 384(8):1195-201. PubMed ID: 12974388 [TBL] [Abstract][Full Text] [Related]
18. Molecular machines encoded by bacterially-derived multi-domain gene fusions that potentially synthesize, N-methylate and transfer long chain polyamines in diatoms. Michael AJ FEBS Lett; 2011 Sep; 585(17):2627-34. PubMed ID: 21827754 [TBL] [Abstract][Full Text] [Related]
19. Complexes of Thermotoga maritimaS-adenosylmethionine decarboxylase provide insights into substrate specificity. Bale S; Baba K; McCloskey DE; Pegg AE; Ealick SE Acta Crystallogr D Biol Crystallogr; 2010 Feb; 66(Pt 2):181-9. PubMed ID: 20124698 [TBL] [Abstract][Full Text] [Related]
20. Regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase in a polyamine auxotrophic cell line. Svensson F; Persson L Mol Cell Biochem; 1996 Sep; 162(2):113-9. PubMed ID: 8905633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]