BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31467266)

  • 1. Ultrabright gap-enhanced Raman tags for high-speed bioimaging.
    Zhang Y; Gu Y; He J; Thackray BD; Ye J
    Nat Commun; 2019 Aug; 10(1):3905. PubMed ID: 31467266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging.
    Bao Z; Zhang Y; Tan Z; Yin X; Di W; Ye J
    Biomaterials; 2018 May; 163():105-115. PubMed ID: 29455067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications.
    Khlebtsov NG; Lin L; Khlebtsov BN; Ye J
    Theranostics; 2020; 10(5):2067-2094. PubMed ID: 32089735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraphotostable Mesoporous Silica-Coated Gap-Enhanced Raman Tags (GERTs) for High-Speed Bioimaging.
    Zhang Y; Qiu Y; Lin L; Gu H; Xiao Z; Ye J
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3995-4005. PubMed ID: 28074643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Petal-like Gap-Enhanced Raman Tags with Controllable Structures for High-Speed Raman Imaging.
    Khlebtsov BN; Burov AM; Bratashov DN; Tumskiy RS; Khlebtsov NG
    Langmuir; 2020 May; 36(20):5546-5553. PubMed ID: 32357014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Biocompatible Plasmonically Encoded Raman Scattering Nanoparticles Aid Ultrabright and Accurate Bioimaging.
    Su Y; Wen S; Luo X; Xue F; Wu S; Yuan B; Lu X; Cai C; Jiang LP; Wu P; Zhu JJ
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):135-147. PubMed ID: 33356115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap-enhanced resonance Raman tags for live-cell imaging.
    Gu Y; Bi X; Ye J
    J Mater Chem B; 2020 Aug; 8(31):6944-6955. PubMed ID: 32490472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional gap-enhanced Raman tags for preoperative and intraoperative cancer imaging.
    Shi B; Zhang B; Zhang Y; Gu Y; Zheng C; Yan J; Chen W; Yan F; Ye J; Zhang H
    Acta Biomater; 2020 Mar; 104():210-220. PubMed ID: 31927113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Stable, Graphene-Wrapped, Petal-like, Gap-Enhanced Raman Tags.
    Chen M; Wang B; Wang J; Liu H; Chen Z; Xu X; Zhao X
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single cell analysis using surface enhanced Raman scattering (SERS) tags.
    Nolan JP; Duggan E; Liu E; Condello D; Dave I; Stoner SA
    Methods; 2012 Jul; 57(3):272-9. PubMed ID: 22498143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman photostability of off-resonant gap-enhanced Raman tags.
    Gu Y; Zhang Y; Li Y; Jin X; Huang C; Maier SA; Ye J
    RSC Adv; 2018 Apr; 8(26):14434-14444. PubMed ID: 35540756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Raman Scattering Bioimaging with an Ultrahigh Signal-to-Background Ratio under Ambient Light.
    Zhu S; Deng B; Liu F; Li J; Lin L; Ye J
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):8876-8887. PubMed ID: 35157434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gap-enhance Raman tags (GERTs) competitive immunoassay based Raman imaging for the quantitative detection of trace florfenicol in milk.
    Shan J; Li X; Han S; Ren T; Jin M; Wang X
    Food Chem; 2022 Oct; 391():133233. PubMed ID: 35605538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells.
    Chang J; Zhang A; Huang Z; Chen Y; Zhang Q; Cui D
    Talanta; 2019 Jun; 198():45-54. PubMed ID: 30876586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sentinel lymph node identification using NIR-II ultrabright Raman nanotags on preclinical models.
    Deng B; Wang Y; Bu X; Li J; Lu J; Lin LL; Wang Y; Chen Y; Ye J
    Biomaterials; 2024 Jul; 308():122538. PubMed ID: 38564889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap.
    Kang JW; So PT; Dasari RR; Lim DK
    Nano Lett; 2015 Mar; 15(3):1766-72. PubMed ID: 25646716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume-Enhanced Raman Scattering Detection of Viruses.
    Zhang X; Zhang X; Luo C; Liu Z; Chen Y; Dong S; Jiang C; Yang S; Wang F; Xiao X
    Small; 2019 Mar; 15(11):e1805516. PubMed ID: 30706645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.
    Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D
    Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Mode Nanoprobes Based on Lanthanide Doped Fluoride Nanoparticles Functionalized by Aryl Diazonium Salts for Fluorescence and SERS Bioimaging.
    Chen H; Nizard P; Decorse P; Nowak S; Ammar-Merah S; Pinson J; Gazeau F; Mangeney C; Luo Y
    Small; 2024 Mar; 20(10):e2305346. PubMed ID: 37875723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging.
    Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D
    Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.