These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31467267)

  • 1. Conformational heterogeneity in human interphase chromosome organization reconciles the FISH and Hi-C paradox.
    Shi G; Thirumalai D
    Nat Commun; 2019 Aug; 10(1):3894. PubMed ID: 31467267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Looping probabilities in model interphase chromosomes.
    Rosa A; Becker NB; Everaers R
    Biophys J; 2010 Jun; 98(11):2410-9. PubMed ID: 20513384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interphase human chromosome exhibits out of equilibrium glassy dynamics.
    Shi G; Liu L; Hyeon C; Thirumalai D
    Nat Commun; 2018 Aug; 9(1):3161. PubMed ID: 30089831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci.
    Liu L; Shi G; Thirumalai D; Hyeon C
    PLoS Comput Biol; 2018 Dec; 14(12):e1006617. PubMed ID: 30507936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of metaphase and interphase chromosomes using fluorescence in situ hybridization.
    Trask BJ; Allen S; Massa H; Fertitta A; Sachs R; van den Engh G; Wu M
    Cold Spring Harb Symp Quant Biol; 1993; 58():767-75. PubMed ID: 7956093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes.
    Abbas A; He X; Niu J; Zhou B; Zhu G; Ma T; Song J; Gao J; Zhang MQ; Zeng J
    Nat Commun; 2019 May; 10(1):2049. PubMed ID: 31053705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FISH-ing for captured contacts: towards reconciling FISH and 3C.
    Fudenberg G; Imakaev M
    Nat Methods; 2017 Jul; 14(7):673-678. PubMed ID: 28604723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous Loop Model to Infer 3D Chromosome Structures from Hi-C.
    Liu L; Kim MH; Hyeon C
    Biophys J; 2019 Aug; 117(3):613-625. PubMed ID: 31337548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited.
    Gué M; Sun JS; Boudier T
    BMC Cancer; 2006 Jan; 6():20. PubMed ID: 16433901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics.
    Iourov IY; Soloviev IV; Vorsanova SG; Monakhov VV; Yurov YB
    J Histochem Cytochem; 2005 Mar; 53(3):401-8. PubMed ID: 15750029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-chromosomal Contact Properties in Live-Cell Imaging and in Hi-C.
    Maass PG; Barutcu AR; Weiner CL; Rinn JL
    Mol Cell; 2018 Mar; 69(6):1039-1045.e3. PubMed ID: 29526697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzene increases aneuploidy in the lymphocytes of exposed workers: a comparison of data obtained by fluorescence in situ hybridization in interphase and metaphase cells.
    Zhang L; Rothman N; Wang Y; Hayes RB; Yin S; Titenko-Holland N; Dosemeci M; Wang YZ; Kolachana P; Lu W; Xi L; Li GL; Smith MT
    Environ Mol Mutagen; 1999; 34(4):260-8. PubMed ID: 10618174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D genome structure modeling by Lorentzian objective function.
    Trieu T; Cheng J
    Nucleic Acids Res; 2017 Feb; 45(3):1049-1058. PubMed ID: 28180292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical methods for gene map construction by fluorescence in situ hybridization.
    Guo SW; Flejter WL
    Genome Res; 1996 Dec; 6(12):1133-50. PubMed ID: 8973908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence intensity profiles of in situ hybridization signals depict genome architecture within human interphase nuclei.
    Iourov IY; Vorsanova SG; Yurov YB
    Tsitol Genet; 2008; 42(5):3-8. PubMed ID: 19140435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes.
    Jiang J; Hulbert SH; Gill BS; Ward DC
    Mol Gen Genet; 1996 Oct; 252(5):497-502. PubMed ID: 8914510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganization of chromosome architecture in replicative cellular senescence.
    Criscione SW; De Cecco M; Siranosian B; Zhang Y; Kreiling JA; Sedivy JM; Neretti N
    Sci Adv; 2016 Feb; 2(2):e1500882. PubMed ID: 26989773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.