These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31467310)

  • 1. Near-Field Scanning Microwave Microscopy in the Single Photon Regime.
    Geaney S; Cox D; Hönigl-Decrinis T; Shaikhaidarov R; Kubatkin SE; Lindström T; Danilov AV; de Graaf SE
    Sci Rep; 2019 Aug; 9(1):12539. PubMed ID: 31467310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent interaction with two-level fluctuators using near field scanning microwave microscopy.
    de Graaf SE; Danilov AV; Kubatkin SE
    Sci Rep; 2015 Nov; 5():17176. PubMed ID: 26597218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free DNA microarray bioassays using a near-field scanning microwave microscope.
    Lee K; Babajanyan A; Melikyan H; Kim C; Kim S; Kim J; Lee JH; Friedman B; Levicky R; Kalachikov S
    Biosens Bioelectron; 2013 Apr; 42():326-31. PubMed ID: 23208106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of magnetic domains by near-field scanning microwave microscope.
    Lee K; Melikyan H; Babajanyan A; Sargsyan T; Kim J; Kim S; Friedman B
    Ultramicroscopy; 2009 Jul; 109(8):889-93. PubMed ID: 19342175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of DNA-hybridization using a near-field scanning microwave microscope.
    Kim S; Jang Y; Kim S; Kim TD; Melikyan H; Babajanyan A; Lee K; Friedman B
    J Nanosci Nanotechnol; 2011 May; 11(5):4222-6. PubMed ID: 21780431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action.
    Qiu L; Sahu R; Hease W; Arnold G; Fink JM
    Nat Commun; 2023 Jun; 14(1):3784. PubMed ID: 37355691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Anti-Counterfeiting Markers through Permittivity Maps Using a Micrometer Scale near Field Scanning Microwave Microscope.
    Gutiérrez-Cano JD; Catalá-Civera JM; Plaza-González PJ; Peñaranda-Foix FL
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MilliKelvin microwave impedance microscopy in a dry dilution refrigerator.
    Cao LW; Wu C; Bhattacharyya R; Zhang R; Allen MT
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37772948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High frequency dielectric properties distribution of BiFeO3 thin film using near-field microwave microscopy.
    Zhang XY; Wang XC; Xu F; Ma YG; Ong CK
    Rev Sci Instrum; 2009 Nov; 80(11):114701. PubMed ID: 19947745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope.
    Gregory AP; Blackburn JF; Lees K; Clarke RN; Hodgetts TE; Hanham SM; Klein N
    Ultramicroscopy; 2016 Feb; 161():137-145. PubMed ID: 26686660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Resolution Detection of Rock-Forming Minerals by Permittivity Measurements with a Near-Field Scanning Microwave Microscope.
    Gutiérrez-Cano JD; Catalá-Civera JM; López-Buendía AM; Plaza-González PJ; Penaranda-Foix FL
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of photoconductivity of silicon solar cells by a near-field scanning microwave microscope.
    Kim J; Babajanyan A; Sargsyan T; Melikyan H; Kim S; Friedman B; Lee K
    Ultramicroscopy; 2009 Jul; 109(8):958-62. PubMed ID: 19375227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning Probe Microwave Reflectivity of Aligned Single-Walled Carbon Nanotubes: Imaging of Electronic Structure and Quantum Behavior at the Nanoscale.
    Seabron E; MacLaren S; Xie X; Rotkin SV; Rogers JA; Wilson WL
    ACS Nano; 2016 Jan; 10(1):360-8. PubMed ID: 26688374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultra-high gain single-photon transistor in the microwave regime.
    Wang Z; Bao Z; Li Y; Wu Y; Cai W; Wang W; Han X; Wang J; Song Y; Sun L; Zhang H; Duan L
    Nat Commun; 2022 Oct; 13(1):6104. PubMed ID: 36243719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent state transfer between itinerant microwave fields and a mechanical oscillator.
    Palomaki TA; Harlow JW; Teufel JD; Simmonds RW; Lehnert KW
    Nature; 2013 Mar; 495(7440):210-4. PubMed ID: 23486060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the microwave to infrared noise photon flux for superconducting quantum systems.
    Danilin S; Barbosa J; Farage M; Zhao Z; Shang X; Burnett J; Ridler N; Li C; Weides M
    EPJ Quantum Technol; 2022; 9(1):1. PubMed ID: 35098151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement.
    Karbassi A; Ruf D; Bettermann AD; Paulson CA; van der Weide DW; Tanbakuchi H; Stancliff R
    Rev Sci Instrum; 2008 Sep; 79(9):094706. PubMed ID: 19044445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of soft material with carbon nanotube tip using near-field scanning microwave microscopy.
    Wu Z; Sun WQ; Feng T; Tang SW; Li G; Jiang KL; Xu SY; Ong CK
    Ultramicroscopy; 2015 Jan; 148():75-80. PubMed ID: 25461583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of single stored-photon with microwave field based on Rydberg polariton.
    Fan J; Zhang H; Jiao Y; Li C; Bai J; Wu J; Zhao J; Jia S
    Opt Express; 2023 Jun; 31(13):20641-20650. PubMed ID: 37381183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.