These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31467318)

  • 1. Diamond-inclusion system recording old deep lithosphere conditions at Udachnaya (Siberia).
    Nestola F; Zaffiro G; Mazzucchelli ML; Nimis P; Andreozzi GB; Periotto B; Princivalle F; Lenaz D; Secco L; Pasqualetto L; Logvinova AM; Sobolev NV; Lorenzetti A; Harris JW
    Sci Rep; 2019 Aug; 9(1):12586. PubMed ID: 31467318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds.
    Förster MW; Foley SF; Marschall HR; Alard O; Buhre S
    Sci Adv; 2019 May; 5(5):eaau2620. PubMed ID: 31149629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox preconditioning deep cratonic lithosphere for kimberlite genesis - evidence from the central Slave Craton.
    Yaxley GM; Berry AJ; Rosenthal A; Woodland AB; Paterson D
    Sci Rep; 2017 Feb; 7(1):30. PubMed ID: 28184036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-freezing and nucleation of diamond via magnetite formation in the Earth's mantle.
    Jacob DE; Piazolo S; Schreiber A; Trimby P
    Nat Commun; 2016 Jun; 7():11891. PubMed ID: 27327434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oxidation state of the mantle and the extraction of carbon from Earth's interior.
    Stagno V; Ojwang DO; McCammon CA; Frost DJ
    Nature; 2013 Jan; 493(7430):84-8. PubMed ID: 23282365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds.
    Regier ME; Pearson DG; Stachel T; Luth RW; Stern RA; Harris JW
    Nature; 2020 Sep; 585(7824):234-238. PubMed ID: 32908266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fossilized high pressure from the Earth's deep interior: the coesite-in-diamond barometer.
    Sobolev NV; Fursenko BA; Goryainov SV; Shu J; Hemley RJ; Mao A; Boyd FR
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11875-9. PubMed ID: 11035808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remobilization in the cratonic lithosphere recorded in polycrystalline diamond.
    Jacob DE; Viljoen KS; Grassineau N; Jagoutz E
    Science; 2000 Aug; 289(5482):1182-5. PubMed ID: 10947983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brown diamonds from an eclogite xenolith from Udachnaya kimberlite, Yakutia, Russia.
    Stepanov AS; Korsakov AV; Yuryeva OP; Nadolinniy VA; Perraki M; De Gussem K; Vandenabeele P
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):41-8. PubMed ID: 21324732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plume-driven recratonization of deep continental lithospheric mantle.
    Liu J; Pearson DG; Wang LH; Mather KA; Kjarsgaard BA; Schaeffer AJ; Irvine GJ; Kopylova MG; Armstrong JP
    Nature; 2021 Apr; 592(7856):732-736. PubMed ID: 33911271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of an oxidized majorite inclusion from Earth's deep asthenosphere.
    Xu C; Kynický J; Tao R; Liu X; Zhang L; Pohanka M; Song W; Fei Y
    Sci Adv; 2017 Apr; 3(4):e1601589. PubMed ID: 28435871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hadean diamonds in zircon from Jack Hills, Western Australia.
    Menneken M; Nemchin AA; Geisler T; Pidgeon RT; Wilde SA
    Nature; 2007 Aug; 448(7156):917-20. PubMed ID: 17713532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The growth of lithospheric diamonds.
    Bureau H; Remusat L; Esteve I; Pinti DL; Cartigny P
    Sci Adv; 2018 Jun; 4(6):eaat1602. PubMed ID: 29881779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?
    Giuliani A; Phillips D; Woodhead JD; Kamenetsky VS; Fiorentini ML; Maas R; Soltys A; Armstrong RA
    Nat Commun; 2015 Apr; 6():6837. PubMed ID: 25882074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping global kimberlite potential from reconstructions of mantle flow over the past billion years.
    Grabreck A; Flament N; Bodur ÖF
    PLoS One; 2022; 17(6):e0268066. PubMed ID: 35679269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of diamond in the Earth's mantle.
    Stachel T; Harris JW
    J Phys Condens Matter; 2009 Sep; 21(36):364206. PubMed ID: 21832312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of iron-bearing carbonates in the deep Earth's interior.
    Cerantola V; Bykova E; Kupenko I; Merlini M; Ismailova L; McCammon C; Bykov M; Chumakov AI; Petitgirard S; Kantor I; Svitlyk V; Jacobs J; Hanfland M; Mezouar M; Prescher C; Rüffer R; Prakapenka VB; Dubrovinsky L
    Nat Commun; 2017 Jul; 8():15960. PubMed ID: 28722013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue boron-bearing diamonds from Earth's lower mantle.
    Smith EM; Shirey SB; Richardson SH; Nestola F; Bullock ES; Wang J; Wang W
    Nature; 2018 Aug; 560(7716):84-87. PubMed ID: 30068951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on the Micro-FTIR Spectra of the Euhedral Faceted Polycrystalline Diamonds (EFPCDs) from Western Yangtze Craton and Its Geological Significance].
    Hu PY; Zeng LL; Yang ZJ; Fu HF; Liu SW; Shen WJ; Peng ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1534-8. PubMed ID: 26601362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diamonds, Eclogites, and the Oxidation State of the Earth's Mantle.
    Luth RW
    Science; 1993 Jul; 261(5117):66-8. PubMed ID: 17750546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.