These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO Maeda F; Ohtani E; Kamada S; Sakamaki T; Hirao N; Ohishi Y Sci Rep; 2017 Jan; 7():40602. PubMed ID: 28084421 [TBL] [Abstract][Full Text] [Related]
27. Diamond preservation in the lithospheric mantle recorded by olivine in kimberlites. Giuliani A; Phillips D; Pearson DG; Sarkar S; Müller AA; Weiss Y; Preston R; Seller M; Spetsius Z Nat Commun; 2023 Nov; 14(1):6999. PubMed ID: 37919292 [TBL] [Abstract][Full Text] [Related]
28. Large gem diamonds from metallic liquid in Earth's deep mantle. Smith EM; Shirey SB; Nestola F; Bullock ES; Wang J; Richardson SH; Wang W Science; 2016 Dec; 354(6318):1403-1405. PubMed ID: 27980206 [TBL] [Abstract][Full Text] [Related]
29. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Walter MJ; Kohn SC; Araujo D; Bulanova GP; Smith CB; Gaillou E; Wang J; Steele A; Shirey SB Science; 2011 Oct; 334(6052):54-7. PubMed ID: 21921159 [TBL] [Abstract][Full Text] [Related]
30. A viable mechanism to form boron-bearing diamonds in deep Earth. Liu S; Lu W; Zhang X; Song J; Lü J; Liu X; Wang Y; Chen C; Ma Y Sci Bull (Beijing); 2023 Jul; 68(13):1456-1461. PubMed ID: 37353437 [TBL] [Abstract][Full Text] [Related]
31. Linking deep CO Wang ZX; Liu SA; Li S; Liu D; Liu J Natl Sci Rev; 2022 Jun; 9(6):nwac001. PubMed ID: 35673528 [TBL] [Abstract][Full Text] [Related]
32. Diamonds sampled by plumes from the core-mantle boundary. Torsvik TH; Burke K; Steinberger B; Webb SJ; Ashwal LD Nature; 2010 Jul; 466(7304):352-5. PubMed ID: 20631796 [TBL] [Abstract][Full Text] [Related]
33. Mantle-slab interaction and redox mechanism of diamond formation. Palyanov YN; Bataleva YV; Sokol AG; Borzdov YM; Kupriyanov IN; Reutsky VN; Sobolev NV Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20408-13. PubMed ID: 24297876 [TBL] [Abstract][Full Text] [Related]
34. First finding of burkeite in melt inclusions in olivine from sheared lherzolite xenoliths. Korsakov AV; Golovin AV; De Gussem K; Sharygin IS; Vandenabeele P Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):424-7. PubMed ID: 19058996 [TBL] [Abstract][Full Text] [Related]
35. The continental lithospheric mantle: characteristics and significance as a mantle reservoir. Pearson DG; Nowell GM Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2383-410. PubMed ID: 12460473 [TBL] [Abstract][Full Text] [Related]
36. Kimberlite ascent by assimilation-fuelled buoyancy. Russell JK; Porritt LA; Lavallée Y; Dingwell DB Nature; 2012 Jan; 481(7381):352-6. PubMed ID: 22258614 [TBL] [Abstract][Full Text] [Related]
38. Primary carbonatite melt from deeply subducted oceanic crust. Walter MJ; Bulanova GP; Armstrong LS; Keshav S; Blundy JD; Gudfinnsson G; Lord OT; Lennie AR; Clark SM; Smith CB; Gobbo L Nature; 2008 Jul; 454(7204):622-5. PubMed ID: 18668105 [TBL] [Abstract][Full Text] [Related]
39. Slab melting as a barrier to deep carbon subduction. Thomson AR; Walter MJ; Kohn SC; Brooker RA Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593 [TBL] [Abstract][Full Text] [Related]
40. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Shirey SB; Richardson SH Science; 2011 Jul; 333(6041):434-6. PubMed ID: 21778395 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]