These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31467318)

  • 21. Diamond formation in an electric field under deep Earth conditions.
    Palyanov YN; Borzdov YM; Sokol AG; Bataleva YV; Kupriyanov IN; Reutsky VN; Wiedenbeck M; Sobolev NV
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A unified continental thickness from seismology and diamonds suggests a melt-defined plate.
    Tharimena S; Rychert C; Harmon N
    Science; 2017 Aug; 357(6351):580-583. PubMed ID: 28798127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mg
    Nestola F; Prencipe M; Belmonte D
    Sci Rep; 2023 Jan; 13(1):83. PubMed ID: 36596860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Archaean and Proterozoic diamond growth from contrasting styles of large-scale magmatism.
    Koornneef JM; Gress MU; Chinn IL; Jelsma HA; Harris JW; Davies GR
    Nat Commun; 2017 Sep; 8(1):648. PubMed ID: 28935863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Displaced cratonic mantle concentrates deep carbon during continental rifting.
    Muirhead JD; Fischer TP; Oliva SJ; Laizer A; van Wijk J; Currie CA; Lee H; Judd EJ; Kazimoto E; Sano Y; Takahata N; Tiberi C; Foley SF; Dufek J; Reiss MC; Ebinger CJ
    Nature; 2020 Jun; 582(7810):67-72. PubMed ID: 32494080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO
    Maeda F; Ohtani E; Kamada S; Sakamaki T; Hirao N; Ohishi Y
    Sci Rep; 2017 Jan; 7():40602. PubMed ID: 28084421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diamond preservation in the lithospheric mantle recorded by olivine in kimberlites.
    Giuliani A; Phillips D; Pearson DG; Sarkar S; Müller AA; Weiss Y; Preston R; Seller M; Spetsius Z
    Nat Commun; 2023 Nov; 14(1):6999. PubMed ID: 37919292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large gem diamonds from metallic liquid in Earth's deep mantle.
    Smith EM; Shirey SB; Nestola F; Bullock ES; Wang J; Richardson SH; Wang W
    Science; 2016 Dec; 354(6318):1403-1405. PubMed ID: 27980206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.
    Walter MJ; Kohn SC; Araujo D; Bulanova GP; Smith CB; Gaillou E; Wang J; Steele A; Shirey SB
    Science; 2011 Oct; 334(6052):54-7. PubMed ID: 21921159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A viable mechanism to form boron-bearing diamonds in deep Earth.
    Liu S; Lu W; Zhang X; Song J; Lü J; Liu X; Wang Y; Chen C; Ma Y
    Sci Bull (Beijing); 2023 Jul; 68(13):1456-1461. PubMed ID: 37353437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linking deep CO
    Wang ZX; Liu SA; Li S; Liu D; Liu J
    Natl Sci Rev; 2022 Jun; 9(6):nwac001. PubMed ID: 35673528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diamonds sampled by plumes from the core-mantle boundary.
    Torsvik TH; Burke K; Steinberger B; Webb SJ; Ashwal LD
    Nature; 2010 Jul; 466(7304):352-5. PubMed ID: 20631796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mantle-slab interaction and redox mechanism of diamond formation.
    Palyanov YN; Bataleva YV; Sokol AG; Borzdov YM; Kupriyanov IN; Reutsky VN; Sobolev NV
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20408-13. PubMed ID: 24297876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First finding of burkeite in melt inclusions in olivine from sheared lherzolite xenoliths.
    Korsakov AV; Golovin AV; De Gussem K; Sharygin IS; Vandenabeele P
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):424-7. PubMed ID: 19058996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The continental lithospheric mantle: characteristics and significance as a mantle reservoir.
    Pearson DG; Nowell GM
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2383-410. PubMed ID: 12460473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kimberlite ascent by assimilation-fuelled buoyancy.
    Russell JK; Porritt LA; Lavallée Y; Dingwell DB
    Nature; 2012 Jan; 481(7381):352-6. PubMed ID: 22258614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diamonds and the african lithosphere.
    Boyd FR; Gurney JJ
    Science; 1986 Apr; 232(4749):472-7. PubMed ID: 17743571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primary carbonatite melt from deeply subducted oceanic crust.
    Walter MJ; Bulanova GP; Armstrong LS; Keshav S; Blundy JD; Gudfinnsson G; Lord OT; Lennie AR; Clark SM; Smith CB; Gobbo L
    Nature; 2008 Jul; 454(7204):622-5. PubMed ID: 18668105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slab melting as a barrier to deep carbon subduction.
    Thomson AR; Walter MJ; Kohn SC; Brooker RA
    Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle.
    Shirey SB; Richardson SH
    Science; 2011 Jul; 333(6041):434-6. PubMed ID: 21778395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.