These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31467341)

  • 1. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular.
    Moushomi R; Wilgar G; Carvalho G; Creer S; Seymour M
    Sci Rep; 2019 Aug; 9(1):12500. PubMed ID: 31467341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective collection of long fragments of environmental DNA using larger pore size filter.
    Jo T; Murakami H; Masuda R; Minamoto T
    Sci Total Environ; 2020 Sep; 735():139462. PubMed ID: 32474249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Author Correction: Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular.
    Moushomi R; Wilgar G; Carvalho G; Creer S; Seymour M
    Sci Rep; 2021 Aug; 11(1):16231. PubMed ID: 34349216
    [No Abstract]   [Full Text] [Related]  

  • 4. Complex interactions between environmental DNA (eDNA) state and water chemistries on eDNA persistence suggested by meta-analyses.
    Jo T; Minamoto T
    Mol Ecol Resour; 2021 Jul; 21(5):1490-1503. PubMed ID: 33580561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the fate of eDNA in the environment and implications for studying biodiversity.
    Harrison JB; Sunday JM; Rogers SM
    Proc Biol Sci; 2019 Nov; 286(1915):20191409. PubMed ID: 31744434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental (e)RNA advances the reliability of eDNA by predicting its age.
    Marshall NT; Vanderploeg HA; Chaganti SR
    Sci Rep; 2021 Feb; 11(1):2769. PubMed ID: 33531558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terrestrial mammal surveillance using hybridization capture of environmental DNA from African waterholes.
    Seeber PA; McEwen GK; Löber U; Förster DW; East ML; Melzheimer J; Greenwood AD
    Mol Ecol Resour; 2019 Nov; 19(6):1486-1496. PubMed ID: 31349392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique.
    Hoshino T; Nakao R; Doi H; Minamoto T
    Sci Rep; 2021 Feb; 11(1):4372. PubMed ID: 33623060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water.
    Holman LE; de Bruyn M; Creer S; Carvalho G; Robidart J; Rius M
    Sci Rep; 2019 Aug; 9(1):11559. PubMed ID: 31399606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental RNA degrades more rapidly than environmental DNA across a broad range of pH conditions.
    Kagzi K; Hechler RM; Fussmann GF; Cristescu ME
    Mol Ecol Resour; 2022 Oct; 22(7):2640-2650. PubMed ID: 35643953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport distance of invertebrate environmental DNA in a natural river.
    Deiner K; Altermatt F
    PLoS One; 2014; 9(2):e88786. PubMed ID: 24523940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release and degradation of environmental DNA and RNA in a marine system.
    Wood SA; Biessy L; Latchford JL; Zaiko A; von Ammon U; Audrezet F; Cristescu ME; Pochon X
    Sci Total Environ; 2020 Feb; 704():135314. PubMed ID: 31780169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can we manage fisheries with the inherent uncertainty from eDNA?
    Jerde CL
    J Fish Biol; 2021 Feb; 98(2):341-353. PubMed ID: 31769024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The particle size distribution of environmental DNA varies with species and degradation.
    Zhao B; van Bodegom PM; Trimbos K
    Sci Total Environ; 2021 Nov; 797():149175. PubMed ID: 34303977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are bacteria potential sources of fish environmental DNA?
    Nukazawa K; Akahoshi K; Suzuki Y
    PLoS One; 2020; 15(3):e0230174. PubMed ID: 32163471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects.
    Valentin RE; Fonseca DM; Gable S; Kyle KE; Hamilton GC; Nielsen AL; Lockwood JL
    Mol Ecol Resour; 2020 May; 20(3):. PubMed ID: 32107858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes.
    Zhang S; Lu Q; Wang Y; Wang X; Zhao J; Yao M
    Mol Ecol Resour; 2020 Jan; 20(1):242-255. PubMed ID: 31625686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The future of fish-based ecological assessment of European rivers: from traditional EU Water Framework Directive compliant methods to eDNA metabarcoding-based approaches.
    Pont D; Valentini A; Rocle M; Maire A; Delaigue O; Jean P; Dejean T
    J Fish Biol; 2021 Feb; 98(2):354-366. PubMed ID: 31644817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis).
    Brys R; Halfmaerten D; Neyrinck S; Mauvisseau Q; Auwerx J; Sweet M; Mergeay J
    J Fish Biol; 2021 Feb; 98(2):399-414. PubMed ID: 32154579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicellular species environmental DNA (eDNA) research constrained by overfocus on mitochondrial DNA.
    McCauley M; Koda SA; Loesgen S; Duffy DJ
    Sci Total Environ; 2024 Feb; 912():169550. PubMed ID: 38142009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.