These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31467587)

  • 1. EnRoot: a narrow-diameter, inexpensive and partially 3D-printable minirhizotron for imaging fine root production.
    Arnaud M; Baird AJ; Morris PJ; Harris A; Huck JJ
    Plant Methods; 2019; 15():101. PubMed ID: 31467587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine root production in a chronosequence of mature reforested mangroves.
    Arnaud M; Morris PJ; Baird AJ; Dang H; Nguyen TT
    New Phytol; 2021 Nov; 232(4):1591-1602. PubMed ID: 34018616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing fine root research with minirhizotrons.
    Johnson MG; Tingey DT; Phillips DL; Storm MJ
    Environ Exp Bot; 2001 Jun; 45(3):263-289. PubMed ID: 11323033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Installation and imaging of thousands of minirhizotrons to phenotype root systems of field-grown plants.
    Rajurkar AB; McCoy SM; Ruhter J; Mulcrone J; Freyfogle L; Leakey ADB
    Plant Methods; 2022 Mar; 18(1):39. PubMed ID: 35346269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of minirhizotron in fine root studies].
    Shi J; Yu L; Yu S; Han Y; Wang Z; Guo D
    Ying Yong Sheng Tai Xue Bao; 2006 Apr; 17(4):715-9. PubMed ID: 16836108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global mangrove root production, its controls and roles in the blue carbon budget of mangroves.
    Arnaud M; Krause S; Norby RJ; Dang TH; Acil N; Kettridge N; Gauci V; Ullah S
    Glob Chang Biol; 2023 Jun; 29(12):3256-3270. PubMed ID: 36994691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive minirhizotron for pepper roots observation and its installation based on root system architecture traits.
    Lu W; Wang X; Wang F
    Plant Methods; 2019; 15():29. PubMed ID: 30949230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing minirhizotron sample frequency for an evergreen and deciduous tree species.
    Tingey DT; Phillips DL; Johnson MG
    New Phytol; 2003 Jan; 157(1):155-161. PubMed ID: 33873694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network "RootDetector".
    Peters B; Blume-Werry G; Gillert A; Schwieger S; von Lukas UF; Kreyling J
    Sci Rep; 2023 Jan; 13(1):1399. PubMed ID: 36697423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massive turnover rates of fine root detrital carbon in tropical Australian mangroves.
    Robertson AI; Alongi DM
    Oecologia; 2016 Mar; 180(3):841-51. PubMed ID: 26581419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconcilable differences: a joint calibration of fine-root turnover times with radiocarbon and minirhizotrons.
    Ahrens B; Hansson K; Solly EF; Schrumpf M
    New Phytol; 2014 Dec; 204(4):932-42. PubMed ID: 25196967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traceable calibration, performance metrics, and uncertainty estimates of minirhizotron digital imagery for fine-root measurements.
    Roberti JA; SanClements MD; Loescher HW; Ayres E
    PLoS One; 2014; 9(11):e112362. PubMed ID: 25391023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability.
    Lovelock CE; Ruess RW; Feller IC
    Tree Physiol; 2006 Dec; 26(12):1601-6. PubMed ID: 17169899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of material used for minirhizotron tubes for root research.
    Withington JM; Elkin AD; Bułaj B; Olesiński J; Tracy KN; Bouma TJ; Oleksyn J; Anderson LJ; Modrzyński J; Reich PB; Eissenstat DM
    New Phytol; 2003 Dec; 160(3):533-544. PubMed ID: 33873660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved method for quantifying total fine root decomposition in plantation forests combining measurements of soil coring and minirhizotrons with a mass balance model.
    Li X; Minick KJ; Li T; Williamson JC; Gavazzi M; McNulty S; King JS
    Tree Physiol; 2020 Oct; 40(10):1466-1473. PubMed ID: 32510135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine.
    King JS; Albaugh TJ; Allen HL; Buford M; Strain BR; Dougherty P
    New Phytol; 2002 May; 154(2):389-398. PubMed ID: 33873440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First estimates of fine root production in tropical peat swamp and terra firme forests of the central Congo Basin.
    Sciumbata M; Wenina YEM; Mbemba M; Dargie GC; Baird AJ; Morris PJ; Ifo SA; Aerts R; Lewis SL
    Sci Rep; 2023 Jul; 13(1):12315. PubMed ID: 37516765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High frequency root dynamics: sampling and interpretation using replicated robotic minirhizotrons.
    Nair R; Strube M; Hertel M; Kolle O; Rolo V; Migliavacca M
    J Exp Bot; 2023 Feb; 74(3):769-786. PubMed ID: 36273326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repetitive seasonal drought causes substantial species-specific shifts in fine-root longevity and spatio-temporal production patterns in mature temperate forest trees.
    Zwetsloot MJ; Bauerle TL
    New Phytol; 2021 Aug; 231(3):974-986. PubMed ID: 33908081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods.
    Guo D; Li H; Mitchell RJ; Han W; Hendricks JJ; Fahey TJ; Hendrick RL
    New Phytol; 2008; 177(2):443-456. PubMed ID: 17944827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.