These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31467603)

  • 1. Synthesis of a [6]rotaxane with singly threaded γ-cyclodextrins as a single stereoisomer.
    Man JYH; Au-Yeung HY
    Beilstein J Org Chem; 2019; 15():1829-1837. PubMed ID: 31467603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient synthesis of a hetero[4]rotaxane by a "threading-stoppering-followed-by-clipping" approach.
    Yin J; Chi C; Wu J
    Org Biomol Chem; 2010 Jun; 8(11):2594-9. PubMed ID: 20379590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Difference Between Rotaxane and Pseudorotaxane.
    Sun HL; Zhang HY; Dai Z; Han X; Liu Y
    Chem Asian J; 2017 Jan; 12(2):265-270. PubMed ID: 27897389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclodextrin Rotaxane with Switchable Pirouetting.
    Zhang QW; Zajíček J; Smith BD
    Org Lett; 2018 Apr; 20(7):2096-2099. PubMed ID: 29542930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Stepwise Synthetic Routes toward a Hetero[4]rotaxane.
    Luo QF; Zhu L; Rao SJ; Li H; Miao Q; Qu DH
    J Org Chem; 2015 May; 80(9):4704-9. PubMed ID: 25874382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balancing ring and stopper group size to control the stability of doubly threaded [3]rotaxanes.
    Hertzog JE; Liu G; Rawe BW; Maddi VJ; Hart LF; Oh J; Dolinski ND; Rowan SJ
    Org Biomol Chem; 2023 Aug; 21(34):6969-6978. PubMed ID: 37581904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile method for preparing surface-mounted cucurbit[8]uril-based rotaxanes.
    Hu C; Lan Y; Tian F; West KR; Scherman OA
    Langmuir; 2014 Sep; 30(36):10926-32. PubMed ID: 25170789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature phosphorescent γ-cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes for specific sensing of tryptophan.
    Yu X; Liang W; Huang Q; Wu W; Chruma JJ; Yang C
    Chem Commun (Camb); 2019 Mar; 55(21):3156-3159. PubMed ID: 30801096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl beta-cyclodextrin and cucurbit[7]uril.
    Ooya T; Inoue D; Choi HS; Kobayashi Y; Loethen S; Thompson DH; Ko YH; Kim K; Yui N
    Org Lett; 2006 Jul; 8(15):3159-62. PubMed ID: 16836355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homo- and hetero-[3]rotaxanes with two pi-systems clasped in a single macrocycle.
    Klotz EJ; Claridge TD; Anderson HL
    J Am Chem Soc; 2006 Dec; 128(48):15374-5. PubMed ID: 17131994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dithienylethene-based rotaxanes: synthesis, characterization and properties.
    Hu F; Huang J; Cao M; Chen Z; Yang YW; Liu SH; Yin J
    Org Biomol Chem; 2014 Oct; 12(39):7712-20. PubMed ID: 25081736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Hydrogenation of an Insulated Diarylacetylene Dimer Incorporated as Axle Molecules in a Cyclodextrin-Based [c2]Daisy Chain Rotaxane.
    Tsuda S; Yano Y; Yamaguchi M; Fujiwara SI; Nishiyama Y
    Chemistry; 2024 Oct; ():e202403523. PubMed ID: 39429117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of axle-core, macrocycle, and side-station structures on the threading and hydrolysis processes of imine-bridged rotaxanes.
    Sugino H; Kawai H; Umehara T; Fujiwara K; Suzuki T
    Chemistry; 2012 Oct; 18(43):13722-32. PubMed ID: 22996640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. γ-Cyclodextrin-based [2]rotaxane stoppered with gold(I)-ethynyl complexation: phosphorescent sensing for nitroaromatics.
    Yu X; Wan S; Wu W; Yang C; Lu W
    Chem Commun (Camb); 2022 May; 58(43):6284-6287. PubMed ID: 35550657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of cleavable coordinating rings as protective groups in the synthesis of a rotaxane with an axis that incorporates more chelating groups than threaded macrocycles.
    Joosten A; Trolez Y; Heitz V; Sauvage JP
    Chemistry; 2013 Sep; 19(38):12815-23. PubMed ID: 23934923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative Capture Synthesis of Functionalized Heterorotaxanes─Chemical Scope, Kinetics, and Mechanistic Studies.
    d'Orchymont F; Holland JP
    J Am Chem Soc; 2023 Jun; 145(23):12894-12910. PubMed ID: 37272851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triply Threaded [4]Rotaxanes.
    Danon JJ; Leigh DA; McGonigal PR; Ward JW; Wu J
    J Am Chem Soc; 2016 Sep; 138(38):12643-7. PubMed ID: 27570875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n = 5, 6) or alpha-cyclodextrin.
    Zhang H; Grabenauer M; Bowers MT; Dearden DV
    J Phys Chem A; 2009 Feb; 113(8):1508-17. PubMed ID: 19191519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient preparation of separable pseudo[n]rotaxanes by selective threading of oligoalkylammonium salts with cucurbit[7]uril.
    Yin J; Chi C; Wu J
    Chemistry; 2009 Jun; 15(24):6050-7. PubMed ID: 19418514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catenane and Rotaxane Synthesis from Cucurbit[6]uril-Mediated Azide-Alkyne Cycloaddition.
    Tse YC; Au-Yeung HY
    Chem Asian J; 2023 Sep; 18(17):e202300290. PubMed ID: 37460745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.