These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore. Oracz J; Westphal V; Radzewicz C; Sahl SJ; Hell SW Sci Rep; 2017 Sep; 7(1):11354. PubMed ID: 28900102 [TBL] [Abstract][Full Text] [Related]
3. AIE Nanoparticles with High Stimulated Emission Depletion Efficiency and Photobleaching Resistance for Long-Term Super-Resolution Bioimaging. Li D; Qin W; Xu B; Qian J; Tang BZ Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28977700 [TBL] [Abstract][Full Text] [Related]
4. Organic Nanoparticles-Assisted Low-Power STED Nanoscopy. Man Z; Cui H; Lv Z; Xu Z; Wu Z; Wu Y; Liao Q; Liu M; Xi P; Zheng L; Fu H Nano Lett; 2021 Apr; 21(8):3487-3494. PubMed ID: 33848175 [TBL] [Abstract][Full Text] [Related]
5. Population Control of Upconversion Energy Transfer for Stimulation Emission Depletion Nanoscopy. Liu Y; Wen S; Wang F; Zuo C; Chen C; Zhou J; Jin D Adv Sci (Weinh); 2023 Jul; 10(20):e2205990. PubMed ID: 37088783 [TBL] [Abstract][Full Text] [Related]
6. Organic nanoparticles with ultrahigh stimulated emission depletion efficiency for low-power STED nanoscopy. Man Z; Lv Z; Xu Z; Cui H; Liao Q; Zheng L; Jin X; He Q; Fu H Nanoscale; 2019 Jul; 11(27):12990-12996. PubMed ID: 31264678 [TBL] [Abstract][Full Text] [Related]
7. Far Red-Shifted CdTe Quantum Dots for Multicolour Stimulated Emission Depletion Nanoscopy. Alvelid J; Bucci A; Testa I Chemphyschem; 2023 Feb; 24(3):e202200698. PubMed ID: 36239140 [TBL] [Abstract][Full Text] [Related]
8. Low-Saturation-Intensity, High-Photostability, and High-Resolution STED Nanoscopy Assisted by CsPbBr Ye S; Yan W; Zhao M; Peng X; Song J; Qu J Adv Mater; 2018 Jun; 30(23):e1800167. PubMed ID: 29687514 [TBL] [Abstract][Full Text] [Related]
13. Simultaneously enhancing the resolution and signal-to-background ratio in STED optical nanoscopy via differential depletion. Jeong S; Kim J; Koh D; Lee JC Opt Express; 2023 Nov; 31(23):37549-37563. PubMed ID: 38017882 [TBL] [Abstract][Full Text] [Related]
14. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Chen C; Wang F; Wen S; Su QP; Wu MCL; Liu Y; Wang B; Li D; Shan X; Kianinia M; Aharonovich I; Toth M; Jackson SP; Xi P; Jin D Nat Commun; 2018 Aug; 9(1):3290. PubMed ID: 30120242 [TBL] [Abstract][Full Text] [Related]
15. Far-field optical nanoscopy based on continuous wave laser stimulated emission depletion. Kuang C; Zhao W; Wang G Rev Sci Instrum; 2010 May; 81(5):053709. PubMed ID: 20515147 [TBL] [Abstract][Full Text] [Related]
17. Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. Lauterbach MA; Keller J; Schönle A; Kamin D; Westphal V; Rizzoli SO; Hell SW J Biophotonics; 2010 Jul; 3(7):417-24. PubMed ID: 20379984 [TBL] [Abstract][Full Text] [Related]
18. Theoretical insight on the saturated stimulated emission intensity of a squaraine dye for STED nanoscopy. Li Y; Niu Y; Kong C; Yang Z; Qu J Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121793. PubMed ID: 36067625 [TBL] [Abstract][Full Text] [Related]
19. Large parallelization of STED nanoscopy using optical lattices. Yang B; Przybilla F; Mestre M; Trebbia JB; Lounis B Opt Express; 2014 Mar; 22(5):5581-9. PubMed ID: 24663899 [TBL] [Abstract][Full Text] [Related]
20. Gated-sted microscopy with subnanosecond pulsed fiber laser for reducing photobleaching. Castello M; Tortarolo G; Hernández IC; Bianchini P; Buttafava M; Boso G; Tosi A; Diaspro A; Vicidomini G Microsc Res Tech; 2016 Sep; 79(9):785-91. PubMed ID: 27380867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]