These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31467822)

  • 1. Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation.
    Wrana D; Cieślik K; Belza W; Rodenbücher C; Szot K; Krok F
    Beilstein J Nanotechnol; 2019; 10():1596-1607. PubMed ID: 31467822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bottom-up process of self-formation of highly conductive titanium oxide (TiO) nanowires on reduced SrTiO
    Wrana D; Rodenbücher C; Jany BR; Kryshtal O; Cempura G; Kruk A; Indyka P; Szot K; Krok F
    Nanoscale; 2018 Dec; 11(1):89-97. PubMed ID: 30226243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions.
    Zahmatkeshsaredorahi A; Jakob DS; Xu XG
    J Phys Chem C Nanomater Interfaces; 2024 Jun; 128(24):9813-9827. PubMed ID: 38919728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode.
    Moores B; Hane F; Eng L; Leonenko Z
    Ultramicroscopy; 2010 May; 110(6):708-11. PubMed ID: 20363077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of the local oxygen vacancy concentration on the piezoresponse of strontium titanate thin films.
    Andrä M; Gunkel F; Bäumer C; Xu C; Dittmann R; Waser R
    Nanoscale; 2015 Sep; 7(34):14351-7. PubMed ID: 26246071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping.
    Jakob DS; Li N; Zhou H; Xu XG
    Small; 2021 Sep; 17(37):e2102495. PubMed ID: 34310045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals.
    Almadori Y; Moerman D; Martinez JL; Leclère P; Grévin B
    Beilstein J Nanotechnol; 2018; 9():1695-1704. PubMed ID: 29977703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM.
    Bieletzki M; Hynninen T; Soini TM; Pivetta M; Henry CR; Foster AS; Esch F; Barth C; Heiz U
    Phys Chem Chem Phys; 2010 Apr; 12(13):3203-9. PubMed ID: 20237710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing and Characterization of SrTiO₃-TiO₂ Nanoparticle-Nanotube Heterostructures on Titanium for Biomedical Applications.
    Wang Y; Zhang D; Wen C; Li Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16018-26. PubMed ID: 26136139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrast inversion of the h-BN nanomesh investigated by nc-AFM and Kelvin probe force microscopy.
    Koch S; Langer M; Kawai S; Meyer E; Glatzel T
    J Phys Condens Matter; 2012 Aug; 24(31):314212. PubMed ID: 22820852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor-acceptor dyads.
    Grévin B; Schwartz PO; Biniek L; Brinkmann M; Leclerc N; Zaborova E; Méry S
    Beilstein J Nanotechnol; 2016; 7():799-808. PubMed ID: 27335768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.
    Collins L; Ahmadi M; Wu T; Hu B; Kalinin SV; Jesse S
    ACS Nano; 2017 Sep; 11(9):8717-8729. PubMed ID: 28780850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution atomic force and Kelvin probe force microscopy image data of InAs(001) surface using frequency modulation method.
    Park YM; Park JS; Chung CH; Lee S
    Data Brief; 2020 Apr; 29():105177. PubMed ID: 32055662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode.
    Stan G; Namboodiri P
    Beilstein J Nanotechnol; 2021; 12():1115-1126. PubMed ID: 34703722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell.
    Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF
    Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy.
    Miyazaki M; Sugawara Y; Li YJ
    Beilstein J Nanotechnol; 2022; 13():712-720. PubMed ID: 35957676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsed Force Kelvin Probe Force Microscopy through Integration of Lock-In Detection.
    Zahmatkeshsaredorahi A; Jakob DS; Fang H; Fakhraai Z; Xu XG
    Nano Lett; 2023 Oct; 23(19):8953-8959. PubMed ID: 37737103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
    Schulz F; Ritala J; Krejčí O; Seitsonen AP; Foster AS; Liljeroth P
    ACS Nano; 2018 Jun; 12(6):5274-5283. PubMed ID: 29800512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.