These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
572 related articles for article (PubMed ID: 31468048)
1. Molecule-level graphdiyne coordinated transition metals as a new class of bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Feng Z; Li R; Ma Y; Li Y; Wei D; Tang Y; Dai X Phys Chem Chem Phys; 2019 Sep; 21(35):19651-19659. PubMed ID: 31468048 [TBL] [Abstract][Full Text] [Related]
2. Borophene-supported single transition metal atoms as potential oxygen evolution/reduction electrocatalysts: a density functional theory study. Xu X; Si R; Dong Y; Li L; Zhang M; Wu X; Zhang J; Fu K; Guo Y; He Y J Mol Model; 2021 Feb; 27(3):67. PubMed ID: 33537857 [TBL] [Abstract][Full Text] [Related]
3. Synergistic trifunctional electrocatalysis of pyridinic nitrogen and single transition-metal atoms anchored on pyrazine-modified graphdiyne. Qi S; Wang J; Song X; Fan Y; Li W; Du A; Zhao M Sci Bull (Beijing); 2020 Jun; 65(12):995-1002. PubMed ID: 36659028 [TBL] [Abstract][Full Text] [Related]
4. Regulating Efficient and Selective Single-atom Catalysts for Electrocatalytic CO Wang S; Feng SY; Zhao CC; Zhao TT; Tian Y; Yan LK Chemphyschem; 2023 Oct; 24(19):e202300397. PubMed ID: 37353969 [TBL] [Abstract][Full Text] [Related]
5. Interface engineering of transition metal-nitrogen-carbon by graphdiyne for boosting the oxygen reduction/evolution reactions: A computational study. Yan T; Li X; Wang Z; Cai Q; Zhao J J Colloid Interface Sci; 2023 Nov; 649():1-9. PubMed ID: 37331105 [TBL] [Abstract][Full Text] [Related]
6. Computational screening of single-atom catalysts supported by VS Qin Z; Wang Z; Zhao J Nanoscale; 2022 May; 14(18):6902-6911. PubMed ID: 35446333 [TBL] [Abstract][Full Text] [Related]
7. From Porphyrin-Like Rings to High-Density Single-Atom Catalytic Sites: Unveiling the Superiority of p-C Luo M; Cai X; Ni Y; Chen Y; Guo C; Wang H ACS Appl Mater Interfaces; 2024 Jan; 16(1):807-818. PubMed ID: 38143306 [TBL] [Abstract][Full Text] [Related]
8. Defective Graphene on the Transition-Metal Surface: Formation of Efficient Bifunctional Catalysts for Oxygen Evolution/Reduction Reactions in Alkaline Media. Mao X; Zhang L; Kour G; Zhou S; Wang S; Yan C; Zhu Z; Du A ACS Appl Mater Interfaces; 2019 May; 11(19):17410-17415. PubMed ID: 31021081 [TBL] [Abstract][Full Text] [Related]
9. Single Ir atom anchored in pyrrolic-N Li X; Su Z; Zhao Z; Cai Q; Li Y; Zhao J J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1005-1013. PubMed ID: 34583028 [TBL] [Abstract][Full Text] [Related]
10. Rational design of 2D MBene-based bifunctional OER/ORR dual-metal atom catalysts: a DFT study. Mou Y; Wang Y; Wan J; Yao G; Feng C; Zhang H; Wang Y Phys Chem Chem Phys; 2023 Nov; 25(42):29135-29142. PubMed ID: 37869987 [TBL] [Abstract][Full Text] [Related]
11. Graphdiyne coordinated transition metals as single-atom catalysts for nitrogen fixation. Feng Z; Tang Y; Chen W; Li Y; Li R; Ma Y; Dai X Phys Chem Chem Phys; 2020 May; 22(17):9216-9224. PubMed ID: 32285896 [TBL] [Abstract][Full Text] [Related]
12. Theoretical study of Mo Lin L; Long X; Yang X; Shi P; Su L Phys Chem Chem Phys; 2023 Sep; 25(36):24721-24732. PubMed ID: 37670691 [TBL] [Abstract][Full Text] [Related]
13. Charge-compensated co-doping of graphdiyne with boron and nitrogen to form metal-free electrocatalysts for the oxygen reduction reaction. Feng Z; Ma Y; Li Y; Li R; Tang Y; Dai X Phys Chem Chem Phys; 2020 Jan; 22(3):1493-1501. PubMed ID: 31868188 [TBL] [Abstract][Full Text] [Related]
14. Transition-metal single atoms embedded into defective BC Zhou Y; Gao G; Chu W; Wang LW Nanoscale; 2021 Jan; 13(2):1331-1339. PubMed ID: 33410443 [TBL] [Abstract][Full Text] [Related]
15. Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions. Hu R; Li Y; Wang F; Shang J Nanoscale; 2020 Oct; 12(39):20413-20424. PubMed ID: 33026034 [TBL] [Abstract][Full Text] [Related]
16. Design of high-performance MoS Xu X; Xu H; Cheng D Nanoscale; 2019 Nov; 11(42):20228-20237. PubMed ID: 31621737 [TBL] [Abstract][Full Text] [Related]
17. Engineering the Coordination Environment of Single-Atom Platinum Anchored on Graphdiyne for Optimizing Electrocatalytic Hydrogen Evolution. Yin XP; Wang HJ; Tang SF; Lu XL; Shu M; Si R; Lu TB Angew Chem Int Ed Engl; 2018 Jul; 57(30):9382-9386. PubMed ID: 29885267 [TBL] [Abstract][Full Text] [Related]
18. Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions. Chen X; Ong WJ; Kong Z; Zhao X; Li N Sci Bull (Beijing); 2020 Jan; 65(1):45-54. PubMed ID: 36659068 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Properties of 2D Carbon-Graphdiyne. Jia Z; Li Y; Zuo Z; Liu H; Huang C; Li Y Acc Chem Res; 2017 Oct; 50(10):2470-2478. PubMed ID: 28915007 [TBL] [Abstract][Full Text] [Related]
20. Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting. Hui L; Jia D; Yu H; Xue Y; Li Y ACS Appl Mater Interfaces; 2019 Jan; 11(3):2618-2625. PubMed ID: 29558102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]