These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31468141)

  • 1. Antimicrobial peptide ROAD-1 triggers phase change in local membrane environment to execute its activity.
    Vasudevan SV; Kumar A
    J Mol Model; 2019 Aug; 25(9):281. PubMed ID: 31468141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating the Bacterial Membrane Disruption Mechanism of Human α-Defensin 5: A Theoretical Study.
    Jung SW; Lee J; Cho AE
    J Phys Chem B; 2017 Feb; 121(4):741-748. PubMed ID: 28067516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The penetration of human defensin 5 (HD5) through bacterial outer membrane: simulation studies.
    Awang T; Pongprayoon P
    J Mol Model; 2021 Sep; 27(10):291. PubMed ID: 34546425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adsorption of human defensin 5 on bacterial membranes: simulation studies.
    Awang T; Pongprayoon P
    J Mol Model; 2018 Sep; 24(10):273. PubMed ID: 30187138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study.
    Zhang L
    Proteins; 2017 Apr; 85(4):665-681. PubMed ID: 28106297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Binding Mechanism of Human Defensin 5 in a Bacterial Membrane: A Simulation Study.
    Awang T; Chairatana P; Vijayan R; Pongprayoon P
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of human defensin 5 (HD5) self-assembly in solution: Molecular simulations/insights.
    Chairatana P; Niramitranon J; Pongprayoon P
    Comput Biol Chem; 2019 Dec; 83():107091. PubMed ID: 31349122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, structure, and activities of an oral mucosal alpha-defensin from rhesus macaque.
    Vasudevan S; Yuan J; Osapay G; Tran P; Tai K; Liang W; Kumar V; Selsted ME; Cocco MJ
    J Biol Chem; 2008 Dec; 283(51):35869-77. PubMed ID: 18930922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating the antimicrobial mechanism of human β-defensin-3 with coarse-grained molecular dynamics.
    Zhao X; Yu H; Yang L; Li Q; Huang X
    J Biomol Struct Dyn; 2015; 33(11):2522-9. PubMed ID: 25562440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes.
    Trabi M; Schirra HJ; Craik DJ
    Biochemistry; 2001 Apr; 40(14):4211-21. PubMed ID: 11284676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Scots Pine Defensin with Model Membrane by Coarse-Grained Molecular Dynamics.
    Ermakova E; Zuev Y
    J Membr Biol; 2017 Apr; 250(2):205-216. PubMed ID: 28214974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The defensin-lipid interaction: insights on the binding states of the human antimicrobial peptide HNP-1 to model bacterial membranes.
    Bonucci A; Balducci E; Pistolesi S; Pogni R
    Biochim Biophys Acta; 2013 Feb; 1828(2):758-64. PubMed ID: 23159481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of human α-defensin 5 (HD5) crossing gram-negative bacterial membrane.
    Awang T; Chairatana P; Pongprayoon P
    PLoS One; 2023; 18(11):e0294041. PubMed ID: 37988380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs.
    Mathew B; Nagaraj R
    Peptides; 2015 Sep; 71():128-40. PubMed ID: 26206286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct mode of membrane interaction and disintegration by diverse class of antimicrobial peptides.
    Agadi N; Maity A; Jha AK; Chakrabarti R; Kumar A
    Biochim Biophys Acta Biomembr; 2022 Dec; 1864(12):184047. PubMed ID: 36100074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption.
    Zhang Y; Lu W; Hong M
    Biochemistry; 2010 Nov; 49(45):9770-82. PubMed ID: 20961099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insight into the mechanism of action of antimicrobial peptide BMAP-28(1-18) and its analogue mutBMAP18.
    Agadi N; Vasudevan S; Kumar A
    J Struct Biol; 2018 Dec; 204(3):435-448. PubMed ID: 30336202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.
    Wimley WC; Selsted ME; White SH
    Protein Sci; 1994 Sep; 3(9):1362-73. PubMed ID: 7833799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.