BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31468198)

  • 1. The independent effects of nutrient enrichment and pulsed nutrient delivery on a common wetland invader and its native conspecific.
    Frevola DM; Hovick SM
    Oecologia; 2019 Oct; 191(2):447-460. PubMed ID: 31468198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraspecific variation in indirect plant-soil feedbacks influences a wetland plant invasion.
    Allen WJ; Meyerson LA; Flick AJ; Cronin JT
    Ecology; 2018 Jun; 99(6):1430-1440. PubMed ID: 29771449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can nutrient enrichment influence the invasion of Phragmites australis?
    Uddin MN; Robinson RW
    Sci Total Environ; 2018 Feb; 613-614():1449-1459. PubMed ID: 28648370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted grazing reduces a widespread wetland plant invader with minimal nutrient impacts, yet native community recovery is limited.
    Rohal CB; Duncan B; Follstad Shah J; Veblen KE; Kettenring KM
    J Environ Manage; 2024 Jun; 362():121168. PubMed ID: 38823302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen immobilization may reduce invasibility of nutrient enriched plant community invaded by Phragmites australis.
    Uddin MN; Robinson RW; Asaeda T
    Sci Rep; 2020 Jan; 10(1):1601. PubMed ID: 32005878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jack-and-master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis.
    Mozdzer TJ; Megonigal JP
    PLoS One; 2012; 7(10):e42794. PubMed ID: 23118844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing nutrient responses and biomass quality for selection of appropriate paludiculture crops.
    Ren L; Eller F; Lambertini C; Guo WY; Brix H; Sorrell BK
    Sci Total Environ; 2019 May; 664():1150-1161. PubMed ID: 30901787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh.
    Tong C; Zhang L; Wang W; Gauci V; Marrs R; Liu B; Jia R; Zeng C
    Environ Res; 2011 Oct; 111(7):909-16. PubMed ID: 21704985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human eutrophication drives biogeographic salt marsh productivity patterns in China.
    Xu X; Liu H; Liu Y; Zhou C; Pan L; Fang C; Nie M; Li B
    Ecol Appl; 2020 Mar; 30(2):e02045. PubMed ID: 31758749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An invasive wetland grass primes deep soil carbon pools.
    Bernal B; Megonigal JP; Mozdzer TJ
    Glob Chang Biol; 2017 May; 23(5):2104-2116. PubMed ID: 27779794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant effects on and response to soil microbes in native and non-native Phragmites australis.
    Bickford WA; Goldberg DE; Zak DR; Snow DS; Kowalski KP
    Ecol Appl; 2022 Jun; 32(4):e2565. PubMed ID: 35138659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of water table manipulation on leaf photosynthesis, morphology and growth of Phragmites australis and Imperata cylindrica in the reclaimed tidal wetland at Dongtan of Chongming Island, China].
    Zhong QC; Wang JT; Zhou JH; Ou Q; Wang KY
    Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):408-18. PubMed ID: 24830240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-acquisition traits link aboveground biomass and environment in inner saline-alkaline herbaceous marshes.
    Ying L; Maohua M; Zhi D; Bo L; Ming J; Xianguo L; Yanjing L
    Sci Total Environ; 2023 Jan; 857(Pt 3):159660. PubMed ID: 36302420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America.
    Guo WY; Lambertini C; Nguyen LX; Li XZ; Brix H
    Ecol Evol; 2014 Dec; 4(24):4567-77. PubMed ID: 25558352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tipping the balance: The role of seed density, abiotic filters, and priority effects in seed-based wetland restoration.
    Tarsa EE; Holdaway BM; Kettenring KM
    Ecol Appl; 2022 Dec; 32(8):e2706. PubMed ID: 35808932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of the common reed (Phragmites australis) to nutrient enrichment depends on the growth stage and degree of enrichment: A mesocosm experiment.
    Cun D; Dai Y; Fan Y; Li T; Song X; Wang F; Liang W
    Sci Total Environ; 2022 Dec; 850():158098. PubMed ID: 35985585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient removal potential and biomass production by Phragmites australis and Typha latifolia on European rewetted peat and mineral soils.
    Geurts JJM; Oehmke C; Lambertini C; Eller F; Sorrell BK; Mandiola SR; Grootjans AP; Brix H; Wichtmann W; Lamers LPM; Fritz C
    Sci Total Environ; 2020 Dec; 747():141102. PubMed ID: 32795788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of soil nutrient variability and competitor identify on growth and co-existence among invasive alien and native clonal plants.
    Zhao CY; Liu YY; Shi XP; Wang YJ
    Environ Pollut; 2020 Jun; 261():113894. PubMed ID: 32062457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis (Poaceae), in northeastern North America.
    Kirk H; Paul J; Straka J; Freeland JR
    Am J Bot; 2011 Jul; 98(7):1180-90. PubMed ID: 21712417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring salt tolerance and indicator traits across four temperate lineages of the common wetland plant, Phragmites australis.
    Sheng W; Liu L; Wu Y; Yin M; Yu Q; Guo X; Song H; Guo W
    Sci Total Environ; 2024 Feb; 912():169100. PubMed ID: 38086483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.